Translator for HPLC HINTS and TIPS for Chromatographers

Saturday, January 30, 2016

HPLC Column Support Pore VOLUME

If an HPLC column had no packing material inside it, then the volume of liquid contained in the cylinder could be calculated using the formula for the volume of a cylinder as follows: 



      Volume of Cylinder = Pi * r2 * L;     
          [where Volume is in ul; Pi = 3.14; r = column radius (mm) and L= column length (mm)]
  Example: Using the above formula, a 4.6 mm x 250 mm column would have an empty volume of 4,155 ul (~ 4.16 mls).

For most chromatography applications we pack the column with a high surface area porous media. Often this is a silica based support. This support media fills the empty space inside the column reducing the total volume accessible by a liquid (or to the samples). If the media used was not porous, it would fill most of the space (depends on size and shape of media). Most commonly used chromatography supports are porous and leave about 70% (0.7) of the original volume available to the mobile phase and sample [Pore Volume = Surface Area (m²/g) x Pore Diameter  (Å) / 40,000]. Based on this information, we use a value of 0.7 as the average pore volume for a packed chromatography column (some supports will have pore volumes which are larger or smaller than this value. The manufacturer will often measure it and provide the value on their published specification sheet).


Using a typical 4.6mm x 250mm column we found the total volume to be 4,155 ul (4.16 mLs). If we now multiply this empty column volume by 0.7 (note: use 0.7 or 70% for columns with fully porous particles and 0.55 or 55% for superficially porous particles) we obtain 2,908ul total volume (2.9 mLs). This is the estimated volume of the fully packed column. This value is very important as it provides an estimate of what the column dead volume will be so we can calculate the 'T' zero time of an unretained analyte. This estimate will depend on the column dimensions, using our HPLC method (be sure and take into account the measured flow rate to determine the column "dead time"). This is one of the very first calculations you make when starting or modifying an HPLC method and is critical information to know at all stages of method development. All chromatographers should know how to estimate this value before using an HPLC system. *You should confirm this estimate by injecting an unretained sample onto the column and measure the retention volume, then compare the two values. The measured value is the most important number (the one we use for calculations), but the estimate should be close (+/- 15%). The estimate is still useful for troubelshooting and method development as when combined with K prime, it provides a quick measure if chromatography has occurred (retention).

For more information on the importance of knowing the HPLC Column Dead Time, please refer to this article link

Notes: The measured support pore Diameter (SIZE) is important for determining if the sample will have access to the inside of the support (e.g. A support with a pore size of 80Å will be too small for most large peptides or proteins, but a support that is 300Å will allow access to many, not all, larger molecules). A support with too small a pore diameter will not allow the sample to access the high surface area inside the support. Instead, the sample will be unretained and pass by it eluting at the column's void volume. This is the basis of SEC or GPC analysis where we use columns with different pore sizes to "filter" samples based on size. Large pores for large Mw samples and small pores for low Mw samples. A general rule is use 300Å or larger pores for samples with Mw > 10,000 and 80Å to 150Å for smaller samples.

More info on pore volume can be found at this article link: https://hplctips.blogspot.com/2014/12/hplc-column-pore-volume-or-pore.html


Saturday, December 26, 2015

Common pKa Values for ACIDS & BASES used in HPLC and LC/MS Method Development





pKa (25°C)                              ACID
0.3                                           Trifluoroacetic acid
2.15                                          Phosphoric acid (pK#1)
3.13                                          Citric acid (pK#1)
3.75                                          Formic acid
4.76                                          Acetic acid
4.76                                          Citric acid (pK#2)
4.86                                          Propionic acid
6.35                                          Carbonic acid (pK#1)
6.40                                          Citric acid (pK#3)
7.20                                          Phosphoric acid (pK#2)
8.06                                          Tris
9.23                                          Boric acid
9.25                                          Ammonia
9.78                                          Glycine (pK#2)
10.33                                        Carbonic acid (pK#2)
10.72                                        Triethylamine
11.27                                        Pyrrolidine
12.33                                        Phosphoric acid (pK#3)



Notes: (1) This is a general list of commonly used acids & bases for chromatography applications and not meant to be a comprehensive list of all values. (2) TFA is an overused and very strong acid for many chromatography applications. It also has strong ion pairing properties and can result in high UV noise, vacuum degasser and/or MS contamination. If you must use it, try and use the lowest concentration which results in the desired pH. Example: 0.1 % TFA ~ pH 2.0, 0.02% TFA ~ pH 2.7. (3) Formic acid is a popular alternative to TFA for many applications, esp LC/MS. (4) Not all acids/bases provide "buffering" on their own.

Reference: CRC Handbook of Chemistry & Physics.

Saturday, November 28, 2015

HPLC Retention Time Drift, Change, Area Variability or Poor Reproducibility. Common Reasons for it.

Retention times and area measurements must be reproducible from run to run. When problems are observed, late, early or variable retention times (and/or peak area values) may be observed. Variation outside of acceptable limits indicates a problem with the sample preparation, method design, function of the HPLC system or a lack of training. Here are several commonly observed reasons why sample (or standard) peak retention times or peak area values may not be reproducible:

(1) TEMPERATURE FLUCTUATIONS:
To obtain reproducible results, the temperature of the HPLC column must be kept constant or controlled during each analysis. Laboratory room temperatures can vary up and down by several degrees during the course of one day and these changes will often change the retention characteristics of the sample(s). The 'On' and 'Off' cycling of power from an air conditioner or heating unit will often cause the baseline to drift in a cyclical manner, up and down, during the day (this can often be seen as a clear sine wave pattern when you zoom-in to study the baseline trace over time). Temperature also changes the refractive index of the mobile phase. Optical (Light) based detectors (i.e. UV/VIS, RI...) will show this change as drift up or down). In some cases, a temperature change of plus or minus one degree C from run-to-run can cause changes in retention times which effect reliability of the method. 

To reduce temperature fluctuations, you must control the temperature of the column and mobile phase (if applicable) during the analysis. This is most commonly done by: (a) using fully equilibrated mobile phase at the start of the day or analysis, (b) keeping the interconnecting lines as short as possible (esp. any which exit the column and go to detectors/flow cells), (c) insulating any stainless steel lines with plastic tubing sleeves to reduce heat loss and (d) using a thermostatted column compartment to maintain the column at a single set temperature throughout the day. Control of the column temperature will remove 'temperature' as a variable from your analysis. Method analysis temperature should be constant from run to run, not a variable. Be sure and document the temperature selected as part of your method. 

(2) INADEQUATE MOBILE PHASE MIXING:
Both high pressure (with separate pumps) and low pressure pumping (one pump with a proportioning valve module) systems depend on efficient mixing to accurately meter the requested mobile phase composition. For gradient analysis, failure to completely mix the mobile phase solution before it enters the HPLC column often results in excessive baseline noise, spikes and poor Retention time reproducibility. If your mobile phase composition changes, then the chromatography will change too (e.g. evaporation of the more volatile organic phase from an open bottle may result in a change in composition). "Mixing" is often accomplished directly in a mixer installed in the flow path of an HPLC pump (For more info, please read this article on selecting a mixer). The associated noise and ripple of incomplete mixing can reduce the limit of detection (LOD) and increase integration error. This mixer is often a static mixer (a simple 'Tee', a tube filled with baffles, a frit or beads, valve orifice or microfluidic device) of low volume design for chromatography use, but allows adequate mixing of the liquids within a prescribed flow rate range. The best mixers incorporate longitudinal and radial mixing in-line. A mixer with too low a volume or of insufficient design can result in poor mixing of the mobile phase (note: incorrect solvent compressibility settings can also cause mixing, flow instability and noise problems too). To reduce mixing problems, first insure that the mobile phases used are fully soluble with each other. Next, make sure that any mixer used is appropriate for the flow rates and volumes you will be using. Monitor the baseline for drift, ripple and artifacts in real time to spot problems and make adjustments to correct them. 

(3) INADEQUATE MOBILE PHASE DEGASSING:
For the best results, continuously degass your mobile phase. Reducing the amount of gas in solution will also improve signal to noise levels of detection, reduce Retention time drift and reduce pump cavitation. If you are using an electronic vacuum degassing module, make sure it is maintained and working 100%. A faulty degasser may cause more damage to your system and methods. Maintain and Repair them just as you do for your other instrument modules. Gas bubbles may cause the inlet or outlet check valves to malfunction (get stuck), baseline noise spikes to appear randomly, flow rates and/or back pressure values to become irregular, detector outputs to show high levels of noise (from air in the flow cell) and also cause the loss of prime or cavitation in pumps. To achieve the best balance of low noise levels and high reliability, both aqueous and organic mobile phases should be fully degassed. This can be accomplished through stand alone vacuum degassing modules or through gentle helium gas sparging. In all cases, degassing must be continuous (not just done one time). Continuous degassing reduces cyclical noise and signal variations. For this reason, I do not recommend using ultrasonic baths to degass mobile phase solutions as these are not used continuously. The mobile phase solution starts to re-absorb gas as soon as you stop sonicating the solution. This results in continuous baseline drift.
Removal of gasses is critical to the function of a modern HPLC pumping system. The liquids used are compressed to very high levels which forces out solubilized gas from the solutions. This is best accomplished before the liquid is transferred into the pump. These gas bubbles must be minimized to achieve desirable baselines. *Even if you use a high pressure pumping system, an inline degassing system reduces the amount of noise and baseline drift. Properly maintain and service your degasser to insure compliant operation. IOW: Always degas your mobile phase solutions.
 
(4) SYSTEM LEAKS or FLOW RATE INSTABILITY:
If the peak retention times have increased over time, one possible reason for this change could be a leak. If your flow rate is reduced by a leak, then the retention times will be longer. Always be alert to this pattern of change and check for any signs of leaks on a regular basis. If you find a leak, do not use the HPLC system until it has been repaired. If there is no leak, then the flow rate may not be what you think it is. 

When the actual flow rate is in question, start by checking it manually (never trust the instrument's display screen or the software value for flow rate. Measure it). An easy way to measure the flow rate involves timing the amount of liquid that exits the HPLC detector line after a defined period of time. For example: If your flow rate is set at 1.000 ml/minute, measure the time it takes to fill a 10ml graduated cylinder. It must take exactly 10.00 minutes.

Inadequate degassing, sticking check valves and/or incorrect solvent compressibility values may also cause flow instability.

(5) COLUMN FOULING: 
One of the most common reasons for changes in retention times or area values of well established peak(s) are due to column contamination and fouling of the support material (or of the inlet frit, guard column). The most common reason for this to happen is due to a lack of column flushing or washing after each analysis (esp when running only isocratic methods). Samples that have been poorly prepared, not filtered or were sourced from a complex matrix (i.e. clinical samples) often contain many compounds which are in-addition to the compound of interest. These materials can be retained on the column and not eluted off during each analysis. They build up over time and cause all kinds of strange problems, including changing retention times, new peaks seen and poor overall or wide peak shapes. 

Gradient analysis provides an opportunity to make sure you use a strong enough mobile phase to elute everything off the column during the run. Make sure you ramp up to a high enough concentration of solvent and use a "hold time" to insure this.
Isocratic analysis is a worst case situation for this to occur as the mobile phase is not ramped up to a strong solvent at the end of the method to push off any late eluters, Instead, they accumulate on the column. 

If you use isocratic methods to analyze samples, then you must follow each analysis run with a second, and separate from your analysis method, "column only wash step". This method does not inject any sample. Instead, it uses a strong wash solution which is compatible with your column AND is well known to dissolve any accumulated material into solution and elute it all off the column. For NP applications an alcohol (e.g. MeOH) may be suitable for this job and for RP applications ACN or even MeCl may be be appropriate. Check with the column manufacturer to find out which wash solutions should be used (do not guess, base it on actual sample solubility). 

(6) SAMPLE OVERLOADING (or too large an Injection volume/concentration for the column): If you inject (load) more sample than the column can hold (as determined by a proper loading study), then the peak that results will often be broader in width with more tailing (from diffusion). This will result in a peak which elutes later than expected, fouls the column and results in poor reproducibility.  Be sure to inject the sample dissolved in the mobile phase (or a solution that is weaker than the mobile phase).

(7) SAMPLE INJECTION VOLUME VARIATION: The injection volume used must be appropriate for the type of injector used. All injectors have a stated range in which they are most accurate. Make sure you are injecting within this ideal range and not at the extreme ends of the range (larger error). Manual injectors with fixed loops should be overfilled (3x) for best results. Autosampler vials must be correctly chosen to be compatible with the injector used, contain an excess of liquid and have a loose cap to prevent evaporation or a vacuum from forming inside the vial. *Test injector accuracy and reproducibility separately, at the volume used for your analysis, as part of your method development review. *Review my article on HPLC injectors for more information.

(8) Changes in the pH OF the MOBILE PHASE: Samples containing ionizable compounds are strongly effected by the pH of your mobile phase. Solutions should be prepared fresh, each day (*acids in solvent may change over time). Buffer capacity is often overlooked (the ability to resist pH change). It is highest at the pKa of the acid/base. Try to work within ±1 pH unit of the buffers pKa value for the best pH control of the mobile phase. If your mobile phase is buffered too far away from its pKa, then poor peak shape or variable retention times are often the result. Note: Weakly ionizable samples can be very sensitive to changes of as little as 0.1 pH unit.