Translator for HPLC HINTS and TIPS for Chromatographers

Saturday, January 6, 2018

UHPLC TIP: Reducing the Column Temperature to Offset Frictional Heating Effects (Causing Poor Resolution)

HPLC column temperature is a critical variable that we adjust and optimize during method development. We use it as a variable during the method development process to improve solubility, optimize peak shape and increase resolution. Once established, it must be carefully controlled during the method analysis to provide reliable and reproducible analysis results. Change the column temperature and you may also change the results obtained. This is a fundamental method development tool and must not be forgotten.

If you are developing a new UHPLC method OR perhaps scaling an HPLC method to utilize 2.5 micron or smaller support particles, then you may observe a loss of resolution or poor peak shape in the new method. There are many reasons why this may occur, and the most common ones relate to not optimizing all of the method parameters correctly when scaling the method (e.g. dwell volume too large, flow cell volume too large, injection volume too large, sample rate too slow, flow rate not optimized, mobile phase composition changes not in scale with the gradient...). But there is another reason...

Resolution may be reduced or lost when all of the initial scaling and instrument set-up parameters are optimized. What is the most likely reason for this? In many cases the use of substantially higher flow rates (relative to linear flow rates) and the use of smaller diameter particles results in much higher backpressures (you may recall that if you halve the particle size, the backpressure increases 4x). The resulting backpressure might be 2, 3 or even 4 times higher than observed in the original method. While these higher backpressures were well within the operating parameters of the HPLC system used, the results obtained were poor. The possible cause? The much higher backpressure increased the amount of frictional heating inside the column, raising the actual analysis method temperature and changing the separation conditions. 

Pushing mobile phase (liquid) through a chromatography column generates heat and pressure. The heat generated increases the actual temperature of the column and reduces the viscosity of the fluid. In conventional columns (i.e. 4.6 x 150 mm, 5u) at 1.00 ml/min, this heating effect is minimal, but at much greater column pressures, > 400 bars, the frictional effects may be substantial. These types of very high pressures may be seen with methods which utilize columns containing the smallest particles (1.9 to 2.5 micron). Enough to change the temperature in the column by several degrees (e.g. >5 degrees C) and result in different method conditions. So, what can you do about this? The most direct way to address the problem is to run the same method at a lower temperature (perhaps decrease by 5 C to start with). This will slightly raise the backpressure (lower temperature equals higher viscosity), but it should cool the column and restore the original temperature conditions used. Additionally, we suggest that you always start column equilibration using a flow ramp to gradually increase the flow over time and reduce the overall heating effect and resulting "shock" placed on the column. An initial delay at equilibration may help reduce these effects (gradually ramp up to the regular flow rate and hold). You may need to try several temperatures and this may be easiest to do if your HPLC has a column compartment with heating and COOLING capabilities. Optimizing the temperature and internal pressures may increase the column lifetime and result in better overall data reproducibility.