Translator for HPLC HINTS and TIPS for Chromatographers

Showing posts with label Backpressure. Show all posts
Showing posts with label Backpressure. Show all posts

Saturday, April 6, 2024

Troubleshooting a GRADUAL HPLC PUMP PRESSURE INCREASE OVER TIME (When PURGING, DURING an ANALYSIS or when FLOW is DIRECTED TO WASTE)

A fully equilibrated column at a constant temperature and flow rate should result in a stable back-pressure over time (~1% variation). Have you observed slowly increasing HPLC system back-pressure readings, even when you are fully equilibrated and everything should be stable? Read on to find out why this may be happening...

First, you must know what are "normal" or expected values for:

  • HPLC Pressure (and normal changes over time);
  • Baseline changes (e.g. drift, equilibration or normal rise/fall);
  • Peaks (e.g. Sample peaks vs. Valve position peaks, spikes or Noise);
  • Retention time delays (due to a leak, gradient delay, fouled column etc).

  vs. those that result from an actual hardware faults. To operate any HPLC system, you must learn how to identify these. It will take many years of hands-on practical experience.

If you know what to look for, the HPLC system will provide you with clues when something is wrong. "Pressure" is one of those clues... Learn to always pay special attention to the system back-pressure and watch for signs of trouble. Pressure should change in a predictable way.

  • HPLC system pressure is not a variable in HPLC method development, but it is an effect resulting from forcing liquid through a highly restricted flow path. 

Always monitor the HPLC system pressure under all conditions (e.g. analysis, washing columns, equilibration, flushing to waste). When the pressure changes, verify it changes in a predictable manner. Acceptable real-time System pressure depends on: (1) the flow rate; (2) the mobile phase composition; (3) the temperature; (4) the flow path selected (e.g. valve switching, running through the column or to waste). As the column becomes fouled over time, the pressure observed may also change (increase). 

  • *COLUMN fouling is one of the most common reasons for the system back pressure to slowly rise over time (usually over weeks) for the same analysis method. Review the sample preparation, injection solvent choice, miscibility/precipitation and/or concentration levels to find the problem.

If you change the tubing connections or actuate a valve, (you change the flow-path in doing so), then the pressure observed may also change too. 

Let us consider what other areas of the HPLC system may change the system pressure.

Pump Filters: Most HPLC pumps have a small disposable outlet filter installed at or near the pump outlet line (Note: In the case of most Agilent brand HPLC pumps, a small PTFE filter may be found at the pump's outlet valve or inside of the prime-purge valve). This filter is designed to collect any piston seal debris or other large particulate contamination from entering the rest of the HPLC system's flow path (i.e. the injector, column, detector...). These small filters (~ 10 to 20um) collect and retain the debris inside the filter so it does contaminate or obstruct the flow path down stream. It is not designed to filter your mobile phase for you (You should have pre-filtered all solutions used in your HPLC). However, this accumulated debris slowly results in a partial obstruction of the flow path, increasing the overall system back-pressure. This may not be obvious to a new user running an analysis method, but the pressure increase due to the clogging filter will occur slowly over time, often masking the change. In a month, it may represent 10-20+ bars increase. In a clean system, if you redirect the flow from the column to waste, you should observe the system back-pressure drop to just a few bars (maybe close to or near zero, depending on the viscosity of the solvent and flow rate). You should know what the "normal" pressure is when the system is directed to waste for many commonly used solvents at typical flow rates. Knowing these values will help you troubleshoot many problems in the future.

  • Example: With a new pump outlet filter installed in most 'standard' HPLC pumps, pure ACN solvent directed to waste, running at 1.00 mL/min may show a reading of about 7-bars. If one week or one month later the reading changes to 15-bars, then the filter is clogged with debris and should be replaced. *Perform this type of check on your HPLC pump every day. What is the "normal" back-pressure reading when you direct your typical mobile phase to waste ? What is the value for pure Methanol, ACN, Water, IPA etc. ? It will be different for each HPLC system.
  • Do you use Aqueous Mobile phase? If so, please filter the final solution through a 0.45 micron (or 0.22u) filter before use. We have observed many laboratories using non-HPLC grade water (e.g. Distilled Water or Sterile Water) resulting in plugging of these pump outlet filters. Always use fresh HPLC grade water (i.e. RO Water) for RP analysis and when preparing buffers.

While equilibrating a mobile phase for an analysis the system pressure should stabilize at some point, and also return to the same pressure range after the analysis is complete and the system is allowed to fully equilibrate. As a matter of fact, you should be monitoring the system pressure and detector output after each analysis and wash to determine when the system is ready for the next injection. If the system does not stabilize over a reasonable amount of time, but instead shows a gradual increase in pressure (over the course of minutes, hours or one day), then this may be a sign that their is a partial obstruction inside the HPLC system. While there are many places a partial obstruction could occur (e.g. the injector or column), one of the most common and easy to check for areas is within the pump's outlet filter. Check by diverting the flow to waste and record the system back-pressure. If it is higher than what is expected, the outlet filter should be replaced first. Note: Other problems such as clogged mobile phase solvent pickup-filters or even worn piston seals may also show similar pressure increases too, but most of the time the pump's outlet filter is the cause.

Conclusion: 

  • REPLACE the disposable outlet filter found in the HPLC PUMP EVERY MONTH. 

Yes, every single month. These are inexpensive disposable filters designed to protect the flow path of your HPLC system. This is one of the least expensive consumable parts that can have the greatest impact on overall HPLC performance. Stock plenty of these filters and learn how to replace them. Your baselines will be more stable allowing for better quantitation, higher sample through-put, less down-time and less service.

  1. For many of the the Agilent 1050, 1100, 1200 and some 1260-series modules using the classic style pump heads, P/N  01018-22707 is suggested ($8.50 USD each). *Please refer to your pump manual to find the correct number for your brand and model of HPLC pump.

Saturday, June 29, 2019

Backpressure Changes, Pressure Drop from HPLC Tubing Selection (0.007, 0.005, 0.010")


In previous articles we have discussed how the choice of column particle size directly changes the system backpressure. Smaller particles generate higher back-pressures. We have also discussed the importance of HPLC tubing selection to minimize delay volume and diffusion within the HPLC's laminar flow path. Let us now focus on how the tubing's internal diameter and length impacts the total HPLC back-pressure (or pressure drop) observed. 

Key Points:  
  1. Try to optimize the plumbing of your HPLC system.  
  2. HPLC Tubing lengths between connections (or HPLC modules) should always be as short as possible. 
  3. Pressure drop is dependent on the tubing length and inner diameter. Doubling the inner diameter of the tubing will decrease the pressure by a factor of 16.


Once the HPLC tubing connection lengths have been minimized, the next critical dimension which affects band broadening, delay volume and peak-width is the internal diameter (ID) of the tubing. The tubing selected should be narrow enough to reduce the undesirable spread of the peak(s) inside the tubing, but not be so narrow or restricted to result in clogs or obstructions (which is why good chromatography guidelines should be followed insuring that each sample is fully dissolved and filtered before injection). Commonly used tubing ID’s for most analytical HPLC systems are: 0.010” (0.25 mm), 0.007” (0.17 mm) or 0.005” (0.12 mm). By far, 0.007” (0.17 mm) is the most commonly used size for modern analytical HPLC analysis as it offers a compromise between low delay-volume and modest back-pressure (with fewer clogs). However, in addition to the much lower internal volumes which accompany the narrower ID’s, the pressure drop measured across equivalent lengths of tubing may change dramatically and this should be noted during set-up, selection and operation. Take the time to learn what "normal" backpressures are under specified conditions.
 
Understanding how the HPLC system backpressure changes as the internal diameter of the tubing varies is extremely useful in troubleshooting a number of common HPLC problems.

Let us compare the pressure drops measured across three popular HPLC tubing ID’s of the same length (40 cm) using common HPLC mobile phase solvents. This table will help illustrate the observed backpressure changes that the tubing ID and liquid have on the pressure drop.

PRESSURE DROP (in bars):

SS Capillary Tubing, 40 cm length, flow rate 1.000 mL/min.

Mobile Phase / Tubing ID
Water
ACN
MeOH
MeOH/Water (1:1)
IPA
0.010” (0.25 mm)
0.7
0.2
0.4
1.2
1.5
0.007” (0.17 mm)
2.7
1.0
1.6
5.1
6.2
0.005” (0.12 mm)
10.4
4.0
6.3
19.1
24

Note: Pressure drop is also a function of tubing length so if we halve (1/2) the length of tubing used, we also will reduce the pressure drop by one-half. 

Note the four-fold change that narrowing the tubing ID has at each ID reduction. The change is more dramatic when viscous solutions are used (i.e. MeOH/Water or IPA). If you re-plumb any part of your HPLC system with new tubing, then awareness of this physical change will assist you in troubleshooting many types of HPLC problems (to know which types of pressure changes indicate a real problem and which types of pressure changes are normal). Changes to the overall length or ID may result in noticeable changes to the total system backpressure. As an experienced chromatographer knows, when HPLC solvents are mixed together (e.g. gradient analysis) the pressure does NOT always follow a linear progression. In some cases, a reaction occurs between the solutions resulting in an overall change to the final viscosity of the mixture which may not be expected or understood by novice chromatographers (e.g. mixtures of MeOH/Water and ACN/Water are very well know examples which show these properties). 
 
You can download a free, more detailed table of 'HPLC Tubing Backpressure Examples' in PDF Format at this link:

Saturday, April 21, 2018

The HPLC Restriction Capillary; Troubleshooting, Qualification and Running Without A Column:

Most types of HPLC pumps will not operate properly without 30 or more bars of back-pressure on their outlets to prevent cavitation and excessive pulsation. Columns play a vital role in stabilizing the baseline during an analysis. In this application, they not only aid retention, but act as a cushion or buffer.

When we want to closely replicate the operation of an HPLC system under "normal" conditions and do not want to use an HPLC column in-line (because a column adds variability), we install a "restrictor" such as a restriction capillary in its place. A restriction capillary is often a very narrow ID section of long tubing (capillary) which will restrict the flow of mobile phase through it. For most HPLC systems, a restrictor which is sized to provide about 1,000 to 2,000 psi (~ 70 to 140 Bars) of back-pressure will closely replicate normal operating conditions. The restrictor can be chosen based on length, ID, volume and your flow rate to create this level of back-pressure. You could place a high pressure rated, zero-dead-volume union its place, but in doing so, the system back-pressure may be extremely low ( a few bars) and show poor pump performance. We need to replicate actual analysis conditions during testing or the results obtained may be invalid and unscientific. An HPLC column, with its densely packed small particles inside acts as a pressure pulse buffer and adds a great deal of back-pressure to the HPLC system. That back-pressure greatly improves the stability of the pump operation and overall baseline. HPLC Columns prevents pulsations by acting as a dampener and/or system buffer.

There will be times when you need to operate the HPLC system without an HPLC column installed.

For Example: 
  • Troubleshooting sources of contamination, carryover or artifact peaks on a column;
  • Measuring the HPLC system delay volume (gradient delay);
  • Testing the performance of the injector;
  • Testing the performance of the pump (measure % ripple); 
  • Testing the performance of a detector module (measure S/N);
  • Running HPLC Operational Qualification Tests (OQ);
  • Running HPLC Installation Qualification Tests (IQ);
  • Running Performance Verification Tests on a Module (PV);
  • Running many of the ASTM Tests (e.g. "Baseline Noise & Drift Test").
Example of a commercially available Restriction Capillary (Agilent P/N G1312-67500). You will want to include any needed details of the restriction capillary chosen for your work in the SOP's that you write which utilize it as part of any test (P/N, source, dimensions, volume...).

Saturday, January 6, 2018

UHPLC TIP: Reducing the Column Temperature to Offset Frictional Heating Effects (Causing Poor Resolution)

HPLC column temperature is a critical variable that we adjust and optimize during method development. We use it as a variable during the method development process to improve solubility, optimize peak shape and increase resolution. Once established, it must be carefully controlled during the method analysis to provide reliable and reproducible analysis results. Change the column temperature and you may also change the results obtained. This is a fundamental method development tool and must not be forgotten.

If you are developing a new UHPLC method OR perhaps scaling an HPLC method to utilize 2.5 micron or smaller support particles, then you may observe a loss of resolution or poor peak shape in the new method. There are many reasons why this may occur, and the most common ones relate to not optimizing all of the method parameters correctly when scaling the method (e.g. dwell volume too large, flow cell volume too large, injection volume too large, sample rate too slow, flow rate not optimized, mobile phase composition changes not in scale with the gradient...). But there is another reason...

Resolution may be reduced or lost when all of the initial scaling and instrument set-up parameters are optimized. What is the most likely reason for this? In many cases the use of substantially higher flow rates (relative to linear flow rates) and the use of smaller diameter particles results in much higher backpressures (you may recall that if you halve the particle size, the backpressure increases 4x). The resulting backpressure might be 2, 3 or even 4 times higher than observed in the original method. While these higher backpressures were well within the operating parameters of the HPLC system used, the results obtained were poor. The possible cause? The much higher backpressure increased the amount of frictional heating inside the column, raising the actual analysis method temperature and changing the separation conditions. 

Pushing mobile phase (liquid) through a chromatography column generates heat and pressure. The heat generated increases the actual temperature of the column and reduces the viscosity of the fluid. In conventional columns (i.e. 4.6 x 150 mm, 5u) at 1.00 ml/min, this heating effect is minimal, but at much greater column pressures, > 400 bars, the frictional effects may be substantial. These types of very high pressures may be seen with methods which utilize columns containing the smallest particles (1.9 to 2.5 micron). Enough to change the temperature in the column by several degrees (e.g. >5 degrees C) and result in different method conditions. So, what can you do about this? The most direct way to address the problem is to run the same method at a lower temperature (perhaps decrease by 5 C to start with). This will slightly raise the backpressure (lower temperature equals higher viscosity), but it should cool the column and restore the original temperature conditions used. Additionally, we suggest that you always start column equilibration using a flow ramp to gradually increase the flow over time and reduce the overall heating effect and resulting "shock" placed on the column. An initial delay at equilibration may help reduce these effects (gradually ramp up to the regular flow rate and hold). You may need to try several temperatures and this may be easiest to do if your HPLC has a column compartment with heating and COOLING capabilities. Optimizing the temperature and internal pressures may increase the column lifetime and result in better overall data reproducibility.


Saturday, May 10, 2014

Gradient Mixing Test For Your HPLC Pump (Step Gradient)

The most popular type of gradient pumping module used to perform HPLC analysis utilizes a low pressure mixing valve in their design. These valves are electronically controlled and proportion the amount of mobile phase from one of several solvent channels into a mixer for introduction to the pump head (*the solenoid valves used for this are sometimes called gradient proportioning valves). They provide random access to multiple solvents (e.g. 4) for method development and column flushing. The mobile phase solutions are mixed at low pressure before entering the high pressure side of the pump head (where they undergo compression). This design requires only one high pressure pumping head and can allow for very high mixing accuracy (often 0.1% per channel) of the mobile phase. This allows for the formation of mobile phase gradients over time which greatly aid in resolving samples apart on the column.

The gradient proportioning valves need to be tested along with the other parts of your HPLC system on a regular basis to insure they are operating within the manufacturer's specifications. They should also be tested anytime you suspect a problem may be present. One quick way to check the operation of two of the valves is to use a tracer compound and STEP gradient to monitor their operation. You can set up a method to perform this test as suggested below.

QUICK GRADIENT COMPOSITION TEST:

Bottle A = 100% DH20;
Bottle B = 0.1 % Acetone in DH20 (*Acetone is the tracer compound);

Flow Rate = 1.000 ml/min;
Column = No column. Install a restriction capillary in place of the column to obtain a backpressure of > 60 Bars;

Detection = 265nm (10 nm bandwidth) UV;

STEP Gradient Program:
    0 to 2.00 min, 0 % B
    2.01 min, 20% B
    4.01 min, 40% B
    6.01 min, 60% B
    8.01 min, 80% B
  10.01 min 100 % B
  12.01 min 20% B
  14.00 min 20% B

Note: If the delay volume (dwell volume) of your system is large, then you may want to adjust the time values shown to LARGER values (i.e. 2 minutes delays are used in this example, but 5 or even 10 minute delays between steps may be more appropriate if your system has > 1 ml dwell volume.

Running the above method should result in a signal trace which shows a step-wise rise to 12.00 minutes (as the acetone concentration increases). The edges of the "steps" should be sharp and the risers should also be close to vertical. The final step change which starts at 10.01 minutes shows a linear gradient change back down to the 20% B level. This line should not have any bumps or dips in it and should transition smoothly back down. The height of the baseline at this point should match the height seen between 2.01 and 4.00 minutes (same 20% B). The height of the proportional steps (e.g. 20, 40, 60, 80) should also be the same. You can use your CDS to measure these height values.

Another useful aspect to view is the S/N ratio at each step. Use your CDS to establish noise windows within each range (e.g. 2.50 to 3.5 minutes). This data is useful when comparing the performance of the pump at different intervals.

If you observe deviations in the height of the proportional steps or dips in the lines, these can be caused by leaking or sticking check valves as well as leaking or sticking gradient proportioning valves. *If you have a quaternary pump, be sure and test all four of the valves used (2x per test).

Lastly, the above example is a generalized method and may or may not be applicable to your specific HPLC pump. Be sure and customize a test method which takes into account the pressure ranges, flow rates, delay volume, mixing volume, and number of low pressure channels used in your pump.



Saturday, December 21, 2013

Two Common HPLC Problems and their Causes (Sudden changes to either the HPLC Backpressure or Peak Shape)

   Let's take a quick look at two different problems which you may encounter when operating an HPLC system. We start with the basic observation and then look at the most likely causes so we can begin the troubleshooting process and repair the problem. An automated HPLC system's flow path typically consists of: The Solvent Pickup Filters (in the mobile phase reservoirs); The Pump(s); AutoSampler; AutoInjector; Column and one or more Detectors.*You should have a good understanding of this flow path before you proceed to diagnose the problem(s).

 *A gradual increase of pressure for the same method over time is often due to column fouling or a dirty inlet frit (e.g. PTFE frit). This article specifically focuses on the causes of a sudden change, not a slow change over time.

   Sudden System Back Pressure Changes: We will assume that you have been running the same method for some time or at least several times without a problem and then suddenly notice that the back pressure has changed from what is normally seen. The problem must lie within the flow path of the system.

   Excessive High Pressure: Typical reasons for this are:
  1.      A fouled or plugged column;
  2.      Wrong flow rate (higher than normal);
  3.      Inlet frit/filter plugged or restricted;
  4.      Plugged line;
  5.      Wrong mobile phase composition.

   Large Drop in Pressure: Typical reasons for this are:
  1.      A leak at a fitting, column or line (Number one reason);
  2.      Wrong flow rate (lower than normal);
  3.      Wrong mobile phase composition. 
  • Start by checking the method parameters to insure that they have not changed (i.e. flow rate, mobile phase composition). Check for leaks or plugs. If the column is suspect, replace it with a zero dead volume union (ZDU) and restrictor and flush the system. Replace the column with a new one or wash the current column according to the column manufacturer's guidelines.

   Sudden Peak Shape Changes: We will again assume that you have been running the same method for some time or at least several times without a problem and then suddenly notice that the peak shape of one or all of the peaks has changed from what is normally seen. *The key thing to keep in mind is that the change occurs all of a sudden, not because of poor initial method development.

   Typical reasons for this are:
  1.      Tailing or Split Peaks: Sample overload, change in flow rate, mobile phase composition (e.g. composition or pH), void formation, dirty frit, injection solvent too strong or a fouled column.
  2.      Fronting: Commonly seen when overloading sample on column.
  3.      Ghost Peaks: Usually due to a contaminated mobile phase, contaminated sample vial or contaminated injector (e.g. rotor seal).
  4.      Broad Peaks: Large sample injection volumes or extra column volume (bad connections with the system or tubing) are usually to blame. Try reducing the injection volume by a factor of 10 and see if the problem goes away. You may also want to wash the column as it may be fouled with sample.

   These are just two common problems we see when using HPLC systems. Note that a dirty or fouled column can cause many of these problems so take care of your columns and wash and test them regularly to insure they are in compliance. There are many other commonly seen problems besides these. If you would like to see a specific problem featured on this blog, then please send me a request.