Translator for HPLC HINTS and TIPS for Chromatographers

Saturday, October 6, 2018

HPLC UV - VIS Wavelength Accuracy Check (" Calibration ") Notes

To verify correct detector wavelength accuracy of your HPLC UV / VIS module it is periodically necessary to measure the wavelength accuracy against know standards using an appropriate SOP ("fit for purpose"). This may be required as part of a Performance Verification (PV), Installtion Qualification (IQ) or Operational Qualification (OQ). 

Wavelength accuracy may be adversely affected (or change) when an UV/VIS detector is serviced/repaired, moved, suffers a physical shock, large temperature charges occur, a lamp is changed, a flow cell is changed, the optics become dirty or contaminated or due to normal wear and age. Depending on the regulations or guidelines applied, most authorities require accuracy to be within 2 to 3 nm of a certified standard within the range used. In practice, we generally achieve accuracy of equal to or better than 0.5 nm across a range of UV / VIS wavelengths. Following good laboratory practice (GLP) requires that we establish the frequency and conditions which determine when they should be have complete documentation of these wavelength checks.

We present a few suggestions in how to measure the detector wavelength accuracy of your HPLC UV / VIS module. 

  • Built-In Test Methods: Most instrument manufacturer's incorporate one or more wavelength accuracy checks directly built into their detectors. This allows quick and accurate measurement of the detector's wavelength accuracy for one or more wavelengths in an automated fashion. The instrument's utilize built-in filters (e.g. holmium oxide) which have been treated with chemicals to provide repeatable wavelength spectra which can be used to determine the accuracy of the detector (and adjust it to within specification in most cases, too). If your instrument has one or more of these built-in test filters, then follow the manufacturer's instructions for using them to measure the wavelength accuracy of your detector. 
  • Using a solution of high purity ANTHRACENE: Dissolved in an HPLC grade alcohol (i.e. Methanol ) or Acetonitrile (for low UV checks), anthracene has a lambda max of 251 nm. A solution concentration of ~ 1 ug / mL for HPLC use can be injected using a standardized method (SOP) and the area% evaluated, one-at-a-time, at several different wavelengths (for VWD or single wavelength detectors) as follows: 249, 250, 251, 252, 253 nm. Relative to the baseline, the areas should show a peak at 251 nm. If you have a scanning UV/VIS detector (aka: DAD or PDA), then you can scan all wavelengths around the 251 nm region and plot the results using just one run to obtain the same type of data.

  • Using a solution of high purity CAFFEINE in HPLC grade water: Caffeine has two useful lambda maximums that we can use for wavelength accuracy checks in the ultraviolet region, 205 nm and 273 nm. We often prepare a range of solutions from 5 ug / mL to 500 ug / mL for linearity testing of UV/VIS detectors, but any of those same solutions could be used for wavelength accuracy checking (similar method as described above for anthracene).

  • One of the most widely used methods requires a solution of HOLMIUM PERCHLORATE  solution (NIST). Available for purchase from many chemical suppliers, this acidic solution provides excellent signals for calibration at well documented transmittance bands (i.e. 241.1, 287.1, 361.5 nm and many others out to ~ 640 nm, depending on the solution it is dissolved in). The detector's flow cell can be filled with the solution and measurements made. The solution is also available coated onto quartz slides and is in fact what is found and used in most detectors today for their built-in verification. However, you can still prepare your own test solution.

Notes: A reminder that the solution that you prepare the wavelength check standard(s) in will directly effect the results obtained. If you prepare it in a solution which has strong absorbance in or near the region you test, the results may be inaccurate (e.g. a test std dissolved in MeOH used to measure wavelength accuracy at 205 nm would not be an appropriate choice). Make sure your SOPs state exactly which solutions are used, how they are prepared and which flow cell are used to make the measurements! Flow cells with different dimensions (i.e. path lengths) will result in different signal outputs and different background solutions will also result in different results which can not be directly compared. For each test, you must use the same conditions to make all measurements.

Saturday, August 11, 2018

Cooling Solutions & Mixtures

An alternative to using an ice bath, peltier cooler or recirculating chiller to cool a solution is to prepare a solution whose freezing point is far below that of water. Here are a few salt mixtures which may be used in the laboratory as "cooling - bath" solutions. 

  • Sodium chloride and crushed ice. * ~ 1 part salt + 3 parts crushed iced.  Good for cooling down to -21C.
  • Potassium chloride and water. * ~ 1 part salt + 4 parts water. Good for cooling down to -11C.
  • Calcium chloride (CaCl2*6H20) and water. *  ~ 2 parts salt + 1.4 parts crushed ice. Good for cooling down to ~ -55C.


Saturday, July 7, 2018

HPLC Tubing and Fittings; An introduction to Nuts, Ferrules and Tubing Choices

Setting up a high pressure liquid chromatography (HPLC) system to run trouble-free takes  patience and a strong set of troubleshooting skills. The patience aspect has usually worn out with most of us, but the troubleshooting skills often come from years of tinkering and practical experience. As a consultant who works with chromatographers on a daily basis, I have found that most chromatographers share many of the same basic HPLC hardware problems. Some of these problems the result of a failure to logically troubleshoot a problem from scratch or by overlooking seemingly minor changes that have been made to the system over time. One common area that is often overlooked in the area of HPLC is that of connection fittings (nuts and ferrules) and tubing selection. Selection and installation of the correct HPLC fittings and tubing can help you avoid future problems while allowing your system to run at peak performance. Common types of high pressure chromatography fittings and tubing found in the laboratory will be discussed in this article.

Please click on this link to download the entire article in PDF format.


Saturday, June 2, 2018

Number of theoretical plates (N), Calculation Formulas

Number of theoretical plates (N):

Often used to quantify the efficiency (performance) of a column (HPLC or GC). "Plates" are expressed per meter of column length and should be calculated based on a retained peak with ideal peak shape or symmetry. 

   N = Plates; tr = Retention Time of Peak; w = Peak width;  w0.5 = Peak width measured at half height.

Two popular formulas are:

Tangent: USP (United States Pharmacopeia / ASTM)

Best for Gaussian peaks. Peak width is often determined at 13.4% of the peak height (w). Inaccurate for peaks which are non-Gaussian, poorly resolved or tail.

   N = 16 (tr / w)2

Half Peak Height: (European Pharmacopeia)

For peaks which are less Gaussian in appearance, using a slightly different formula with the peak width measurement made at the half-height (W0.5). Less accurate for peaks which are poorly resolved or tail.

   N = 5.54 (tr / w0.5)2

  • Other formulas, not included, for calculating Plate numbers include: Half Width, Variance Method, Area / Height & Exponential Modified Gaussian (EMG).
  • Caution. HPLC column "Plate" values should not be used for a final determination of efficiency unless you are comparing all results on the same exact HPLC system, which is setup and run under identical conditions each time. Since the result is based on many possible variables, including how your HPLC system is plumbed (dwell volume & tubing ID), the peak's Kprime and symmetry, the detector used, sampling rate, integration quality, flow cell volume, flow rate, actual column used (to name a few), it can easily be manipulated to be very large or small.

Saturday, April 21, 2018

The HPLC Restriction Capillary; Troubleshooting, Qualification and Running Without A Column:

When we want to closely replicate the operation of an HPLC system under "normal" conditions and do not want to use an HPLC column in-line, we install a "restrictor" in its place. A restriction capillary is often a very narrow ID section of long tubing (capillary) which will restrict the flow of mobile phase through it. For most HPLC systems, a restrictor which provides about 1,000 psi (~ 70 Bars) of back-pressure will closely replicate normal operating conditions. The restrictor can be chosen based on length, ID, volume and your flow rate to create this level of back-pressure. You could place a high pressure rated, zero-dead-volume union its place, but in doing so, the system back-pressure may be extremely low and show poor pump performance. An HPLC column, with its densely packed small particles inside adds a great deal of back-pressure to the HPLC system and that back-pressure greatly improves the stability of the baseline. HPLC Columns prevents pulsations by acting as a dampener and/or system buffer. Most types of HPLC pumps will not operate properly without 20 or more bars of back-pressure on their outlets to prevent cavitation and excessive pulsation. Columns play a vital role in stabilizing the baseline during an analylsis.

There will be times when you need to operate the HPLC system without an HPLC column installed.

For Example: 
  • Troubleshooting sources of contamination, carryover or artifact peaks on a column;
  • Measuring the HPLC system delay volume (gradient delay);
  • Testing the performance of the injector;
  • Testing the performance of the pump; 
  • Testing the performance of a detector module;
  • Running HPLC Operational Qualification Tests (OQ);
  • Running HPLC Installation Qualification Tests (IQ);
  • Running Performance Verification Tests on a Module (PV);
  • Running many of the ASTM Tests (e.g. "Baseline Noise & Drift Test").
Example of a commercially available Restriction Capillary (Agilent P/N G1312-67500). You will want to include any needed details of the restriction capillary chosen for your work in the SOP's that you write which utilize it as part of a test (P/N, source, volume...).

Saturday, March 10, 2018

Vespel, Tefzel or PEEK Valve Rotor Seals ?

One of the most common HPLC preventative maintenance parts is the injector valve rotor seal. Worldwide, the majority of these chromatography parts are produced by Rheodyne (IDEX) or Valco Instruments (VICI) and used by the major instrument manufacturers in their products. These valve seals are critical to maintaining a leak free, high pressure seal inside the injector. They are subjected to a lot of wear and chemical exposure with use. They have a finite lifetime which may be very short, in some applications (a few months) or last for many years in others. *The most common reason for rotor seal damage is a lack of flushing when buffers are used. Regular flushing down of the flow path (without the buffer) is required to maintain a clean flow path. Buffer deposits and crystals scratch and damage the rotor surfaces. Depending on the specific use and application, rotor seals are often replaced as a preventative measure once every 6 or 12 months. They should also be replaced whenever they are scratched, heavily worn, no longer sealing well, leak or become contaminated. Failure to maintain your injector's parts may lead to HPLC carry-over contamination problems.

The choice of rotor seal material should be based on: (1) the types of chemicals it will come into contact with; (2) the working pH range; (3) the temperature range.

  • Note: When choosing a valve rotor seal material, please refer to the valve manufacturer's information, compatibility and advice. Blends and properties may vary between vendors so always verify compatibility with them before use.
Common HPLC Rotor Seal Material Types:

 Vespel ®: Chemically, this is a polyimide blend (DuPont). One of the most widely used materials for HPLC valve rotor seals. It has excellent chemical compatibility with most HPLC mobile phases, excellent temperature stability and a pH limit of 10. An excellent choice for most applications.

Tefzel ®: Chemical name, ethylene-tetrafluoroethylene (aka, "ETFE"). It has excellent chemical compatibility with most HPLC mobile phases and a higher pH limit of 14. Tefzel's preferred applications are where very high (>9) or very low (<3) pH solutions or mobile phases are used. Not compatible with some chlorinated solvents and in most forms it has a temperature limit of 50°C.

PEEK: Chemical name, polyether-ether ketone. Known for applications where biocompatibility and / or high temperatures are of concern. Like Tefzel, it has excellent chemical compatibility at room temperature with most HPLC mobile phases. Most vendors report a working pH range between 1 and 14. Unlike Tefzel, it has a much higher temperature limit (i.e. 100°C or higher), but its resistance to some chemicals appear to degrade with increasing temperature. Contraindicated where it will come into contact with solutions of THF, methylene chloride, DMSO or concentrated acids (i.e. nitric or sulfuric). Some sources have observed problems with chloroform as well, especially with PEEK tubing, so it may not be recommended for those applications.

For more information on troubleshooting HPLC injector valves, please refer to this linked article, "Troubleshooting HPLC Injectors (Manual and Automated)". 

Saturday, February 10, 2018

HPLC Baseline Stabilization Tips for Refractive Index Detectors (RI or RID)

If you use refractive index detection (RID) for your HPLC samples, then you are already familiar with the very long equilibration periods needed to stabilize the system and associated baseline drift. Initial equilibration can take several hours. In fact, re-equilibration takes far longer to achieve with this detection mode than most others (i.e. UV/VIS, FLUOR, EC). While there is no quick cure for these delays, there are a number of things that you may be able to do to minimize or reduce these wait times. Here are a few to consider.

  • ROOM TEMPERATURE: Locate the RID in a quiet, stable location. If the room temperature in which your HPLC system with RID system is located fluctuates by even one degree C, that can effect the stabilization of the system. The ideal room to use RID will be away from any windows, drafts, doorways, direct sunlight and HVAC vents or ducts. It should be located in a quiet area away from people walking by it. All of these things can contribute to temperature instability, which is what you want to avoid.

  • INSULATION of HPLC CAPILLARY LINES: All of those stainless steel capillary lines leading from your column outlet to the RID's flow cell are loosing heat to the surrounding air (cooling). To reduce this thermal effect, insulate any metal lines with plastic tubing to reduce the heat loss. Most any type of laboratory grade, thick walled plastic tubing can be used. Pass the SS tubing through the plastic insulated tubing or use a section of split-tubing to cover it. Cover as much of the exposed tubing as possible, right up to the fittings. - Note: Sometime the HPLC system's solvent bottles may be subjected to varying temperature changes too. In these cases you can wrap the bottles with an appropriate insulating material to reduce the effects.
  • FLOW CELL TEMPERATURE: Modern RID units have a heated flow cell with thermostat to control the temperature of the flow cell. This helps stabilize the temperature inside the flow cell as well as minimize the unintended effect that the heat given off by the RID's electronics has on the temperature inside the flow cell. If the flow cell temperature does not stabilize, then the baseline will drift in response to it. For most methods, select a flow cell temperature which is at least 10 degrees C above ambient (since most of these units can heat only, not cool). Factor in any column temperature used too. If you are maintaining your column at 40C, then try to maintain your flow cell at the same temperature to minimize any differences. Feel free to experiment to find the best temperature for your flow cell. Try different temperatures (in 5 degree C intervals), wait for the system to fully equilibrate, then measure the baseline S/N ratio. You may find best results using different column and flow cell temperatures. Sometimes the room temperature effect can be countered by using an optimized flow cell temperature (higher or lower). Always factor in your mobile phase boiling point (b.p.) into your method and keep the column and flow cell temperatures well below the b.p.

  • DEGASSING / DECREASING DISSOLVED OXYGEN: Reduce and stabilize the amount of dissolved gas inside the mobile phase and you may achieve faster equilibration times with a RID. You do not need to remove all the dissolved gas (in fact, a reduction of 50% is often enough). The amount of dissolved gas inside the mobile phase effects the measured refractive index. As it changes, so does your baseline. High percentages of mobile phase dissolved gas = lower RI; Less dissolved gas = higher RI. Now water holds less dissolved gas than non-polar organic solvents (e.g. THF) so this effect is more pronounced when you are running non-aqueous GPC separations, but maintaining a stable dissolved gas level for all mobile phase types is important to reduce baseline drift. Stability is our goal. Continuous degassing of the mobile phase either through sparging with high purity helium gas (best for non-aqueous separations) OR using an inline vacuum degasser should provide you with a way to control the amount of dissolved gas in the solution and reduce drift.

These are a few of the factors which can effect the equilibration and drift times of an HPLC system equipped with a refractive index detector (RID). Careful selection of the instrument module's location, insulating the exposed capillary lines and bottles, optimizing the column and flow cell temperatures, maintaining a steady and controlled temperature in the environment, plus removing dissolved gas from the mobile phase may all contribute to more stable baselines and better quality peak integration.

Another article which may help you improve your analysis method can be found on this site. "Diagnosing & Troubleshooting HPLC Pressure Fluctuation Problems (Unstable Baseline)".