Translator for HPLC HINTS and TIPS for Chromatographers

Saturday, February 4, 2017

Determine the HPLC System Dwell Volume (Gradient Delay Volume)



Note: The total HPLC gradient system dwell volume is different than the HPLC column’s void volume. Two different terms for two very different measurements.

When we perform gradient HPLC analysis, the mobile phase composition is changed over a period of time. The mobile phase is mixed in real time by the pump(s), mixer and/or valves, then transported to the injector and finally, on to the head of the HPLC column. The total volume of liquid contained between where the mobile phase is mixed and the head of the column helps us determine when the newly mixed solution arrives at the column head (it is not instantaneous). This delay is often referred to as the gradient delay time (or delay volume) and its value will vary for different HPLC systems due mainly to differences in tubing dimensions used, pumping system type and the design of the flow path. 

For example: If the system dwell volume is found to be 1 ml and the flow rate used is 1.000 ml/min, then the gradient delay time is one minute. 

So how do we know what the system dwell volume or gradient delay volume is? Well, we measure it of course!

Measure the ‘System Dwell Volume’ (aka: Gradient Delay Volume)*:
(1) REMOVE any HPLC column(s) and install a Zero Dead Volume Union (*ZDV) or a restriction capillary of know volume in its place.
(2) Prepare Two Different Mobile phase solutions:
Bottle ‘A’: HPLC grade Methanol (MeOH).
Bottle ‘B’: HPLC grade Methanol with 0.1% acetone added (v/v).
(3) Set your UV/VIS detector to 265 nm (8 nm Bandwidth, Reference OFF).
(4) Program a suitable system flow rate and create a simple Gradient Method (linear change) which starts at 0.0 minutes with 100% ‘A’ (HPLC grade Methanol) and 0% B (HPLC grade Methanol with 0.1% acetone added) and runs to 0% ‘A’ and 100% ‘B’ for about 10.0 minutes (actual times used will depend on your selected flow rate).
(5) Flush and degas both solutions, ‘B’ first, then ‘A’ through the system until you get a nice clean, flat baseline. Make sure their is enough backpressure on the pump (>40 bars) to obtain a stable signal (use a restrictor or back-pressure regulator if needed).
(6) No injection should occur during this method.
(7) Start the method (RUN) and observe the 265 nm signal over time. At some point you should observe the signal begin to rise. When you see this signal change occur, the acetone has finally made it from the pump head to the detector’s flow cell. Make note of the time this occurs. 

Using the known flow rate and observed signal change time, you can now estimate the total system dwell volume. 

Example: If you observe the signal start to rise steeply at 2.00 minutes and your flow rate was 1.000 ml/min. Your system dwell volume would be 2.000 mls. 

A more accurate system dwell volume value can be obtained by next running the same method with an injection of acetone (e.g. 1 ul) and noting the time at which the injection peak is first seen. That will give you the time it takes the sample (and therefore the volume needed) to go from the injector to the flow cell. If you subtract this time off the system dwell time you recorded in the last test, you will have the actual measured time from the pump head (or proportioning valve) to the head of the column (vs the flow cell). Normally the volume contained in this tubing and flow cell are very small relative to the volume in the rest of the system, so we can ignore them. However, when using some of the very low volume columns (e.g. 2.1 x 50 mm), the volume contained in these areas can become significant so when appropriate, we need to be aware of them.

Failure to take into account changes in HPLC system dwell volumes can result in methods which no longer work or provide different results. This is because the gradient rate change you program in your method may not allow enough time for the new mobile phase composition to reach and flow all the way through the column in the time that you have programmed. A common mistake we see is when users forget to adjust the gradient profile when changing column dimensions or program changes using too fast a time.

BTW: One common trick we use to improve compatibility between systems which have different dwell volumes is to include an initial (time 0.0)  isocratic hold-time into the start of each method. If all systems used have system delay volumes under 3 mls, then add a 3 minute isocratic hold time at the start of each method (if 1.000 ml/min flow rates are used), before any gradient starts. While not the best way to deal with the issue, this type of “cheat” can make it possible to quickly adapt a method for use on several different system types.

*Note: This is a generic method to determine the system dwell volume or gradient delay volume. Detector signal buffering and flow cell volume also adds to the delay and in some cases, must also be accounted for too. There are many other methods which can be used for this determination as well. This proposed example serves to illustrate the concept only.

Saturday, December 31, 2016

PEAK PURITY Determination by HPLC Diode Array Chromatography Software (UV/VIS): Limitations and Uses



"Peak Purity" software determination by HPLC UV/VIS detection is one of the most abused and easily misunderstood features found in advanced liquid chromatography systems (e.g. HPLC, UHPLC and CE).

For HPLC, one or more inline detectors can be used which provide additional data about a fully resolved peak’s physical or chemical properties. The data obtained can be compared to that of a pure standard, or known impurity. For compounds which absorb light in the region of most UV/VIS detectors (~ 200 to 900 nm), a single wavelength detector (e.g. UV/VIS) provides a very limited second dimension of data (retention time is the first dimension), but a scanning, multi-wavelength UV/VIS detector can add a second and third dimension of data to the retention time. Scanning detectors, commonly known as Diode-Array Detectors (aka: DAD or PDA) are commonly used in HPLC and CE analysis (they are required for routine method development). A scanning DAD can provide detailed sample UV/VIS spectra across a range of wavelengths for each peak, at any retention time recorded, allowing for a 3D plot of the spectra to be recorded much like a “fingerprint”. "Pure" compounds which do absorb light across a pre-defined wavelength range should show identical spectral profiles (“slices”) across the upslope, apex and down slope of the resolved peak. "Impure" peaks may show dissimilar spectra across the width of the peak revealing the presence of a co-eluting peak or impurity. Impure peaks may also NOT show any dissimilar spectra at all (because some compounds may not be detected). When a properly developed HPLC analysis method is used to evaluate the purity of a sample, the single dimension of “retention time” is evaluated with additional dimensions of analysis such as the UV/VIS peak spectra. "Peak Purity" relies on the detection of a sample's spectral profile to detect the presence of an "impurity" (that may have co-eluted with the sample). This additional dimension of analysis (full Spectra) is required to improve the confidence level that a peak may in fact be correctly identified (qualitatively) and does not contain any co-eluting compounds. IOW: "Peak Purity" does not actually test for purity.



Diode-Array 'Software' based Peak purity determination by HPLC is a qualitative assessment of the impurity profile of the sample. It is designed to reveal impurities, NOT prove peak purity. BTW: We really should rename it “Peak Spectral Impurity Assessment" because that is in fact what we are measuring. The algorithm used for Peak Purity determination is designed to confirm the presence of one or more impurities by comparing spectral data slices (multiple slices taken at the apex and both the upslope and down slope sections of the peak).  A mismatch would indicate the peak has not been fully resolved (one or more co-eluting peaks are present). In other words, it is impure by UV/VIS analysis. Note: It does not indicate that the compound is impure, but rather 'the peak' being measured is. As you can see, the concept makes sense, but the how it is used in many laboratories is flawed leading to invalid reports and data.

  • “Peak Purity” does not in fact indicate the actual purity of the compound, but instead indicates when a peak may be found to contain impurities. It is an estimated measure of PEAK Impurity.

In simple terms, IF the spectral slices obtained from one peak are not identical, than the peak may contain one or more impurities. Co-elution is the most likely reason for this.

Points to consider when using "Peak Purity" software:

  • The absence of any spectral differences across the sample peak are not an indication of actual purity;
  • Compounds similar to your sample may have similar absorbance profiles (fooling the system);
  • The relative concentration of actual impurities may not be high enough to detect;
  • The compounds / impurities may not absorb light at the wavelengths scanned;
  • The HPLC method used, the software settings and the parameters that you chose in the ‘Peak Purity’ software menu have a huge effect on the results obtained. Different people often get different results for the same sample. Inputting poor quality settings or using a poor quality method often leads to misleading purity results. This is an advanced software feature requiring many years of training to use. Again, it does NOT test for purity.
  • The peak of interest must be retained on the column (K prime > 2) and resolved apart from any observed peaks. Don't use peak purity to analyze peak(s) which elute at or near the column void volume (Low K prime values may demonstrate that good chromatography fundamentals were ignored. Poor quality methods fail validation). Poor quality HPLC method and poorly selected DAD "Purity" settings result in invalid results (audits, recalls etc may result from reliance on a subjective "software" feature).


We prefer to think of HPLC 'Peak Purity Assessment' as a null test. If the recorded peak spectral data slices are different, than you probably have co-elution and/or impurities present (so try and develop a better method to resolve the peaks apart). If no differences in the spectra are seen (they are similar), then the peak may be pure or may contain compounds with similar spectra as are commonly seen with related reaction synthesis products or compounds. So only when you detect differences in the acquired spectra can you be confident that there IS a qualitative difference or impurity present. You will not know what percentage of impurity level is (since you do not know what it is).

When configuring the Peak Purity parameters for your sample, you must start with a very high quality HPLC method (A "validated method" is not necessarily a high quality method. "Validation" does not in fact insure that the method follows good chromatography fundamantals). The correct detector sample rate, threshold, slope, signal wavelength and bandwidths need to have been properly selected and used (Reference Wavelength always OFF). The peaks shown in your chromatogram should have excellent symmetry with good on-column retention (K-prime, as applicable to mode), baseline separation (> 2.0 for non-SEC modes) and very low baseline noise levels. The two Peak Purity spectral reference points should be manually selected and placed at times before and after the peak of interest in clear baseline areas where no other peaks or spectra are seen (never use the instrument default settings for reference points!). Select at least 7 spectra from the sample peak for comparison (more detail can be provided with more spectra, but be careful not to select spectra near the baseline or the noise limits). If your method and chromatogram are not of the highest quality, then please do not use the automated "peak purity" analysis feature, instead spend time improving your method.



SUMMARY: 
The HPLC UV/VIS Peak Purity Analysis (“Peak Spectral Purity”) feature is very complex and has many software settings which must be set up correctly to obtain any scientifically useful data regarding possible peak impurity levels. 

  • Do NOT use the system default settings / values for 'Peak Purity' ! They are just place holders for actual values (which you must calculate and fill in the correct values for your method).
 
* Due to a general lack of formal training, I often see this software feature being used incorrectly by most chromatographers. This is worth repeating... the HPLC method used to obtain the original data must be of the highest quality and the training of the operator must also be at the highest level. To use this advanced software feature successfully, an advanced understanding of the fundamentals of chromatography are required as are a detailed understanding of all of the peak purity software features (how to set the correct threshold, obtain reference baselines, Set sampling rate, noise levels, signal extraction, normalization settings…). Routine HPLC training classes do not cover these types of tasks. Years of specialized training and practical experience are required to use these tools. Never use the “automated” versions or the manufacturer’s default values to find “Peak Purity”. The only correct way to use these features is to manually tune the method and settings to your specific sample. Failure to customize the method and settings used may result in invalid data and incorrect "purity" determinations. 

Due to very complex software setup needed for "Peak Purity" determination by UV/VIS spectra, the requirement for a high quality HPLC method and a high quality data-set,it is our opinion that few should ever use it. In general, the recommendation for most chromatographers is to not use this feature unless first having demonstrated the required skills and advanced understanding of the fundamentals of chromatography. Most of the methods that we professionally review where "Peak Purity" data have been used as part of the method have been found to be based on invalid methods, resulting in any "purity statements" issued as unscientific and invalid. Please proceed cautiously and request professional review of any methods which employ it BEFORE committing to relying on it.

©Copyright, March 1, 1996 by William Letter of Chiralizer Services (Plainsboro, NJ) from a portion of material presented in an HPLC Diode Array Method Development Class.

Saturday, November 26, 2016

HPLC Detector Optical SLIT WIDTH Selection

A few notes on HPLC Optical Slit Width selection:

   Notes: 
  1. The chosen slit width setting determines the amount of light which is directed to the detector.
  2. For most HPLC methods, a slit width value of 4 nm is suggested. 
  3. Bandwidth should be set at least as wide as the optical slit width.

Characteristics of Narrow Optical Slit Widths:
  • Less light falls on the detector
  • Less signal intensity
  • Increased baseline noise
  • S/N ratio decreases
  • Spectral resolution improves which allows for more accurate spectral identification.
Characteristics of Wide Optical Slit Widths:
  • More light falls on the detector
  • Greater signal intensity
  • Decreased baseline noise 
  • S/N ratio improves
  • Spectral resolution decreases and detail is lost. Less accurate spectral identification and an increase in errors for spectral library matching.

Saturday, October 29, 2016

Notes on Cleaning bound Protein from RP HPLC columns:



First, a few comments:

  • ·         Before proceeding with any column regeneration or cleaning procedures, always refer to the specific advice provided by the column manufacturer. Approved maintenance and cleaning instructions can often be found in the product guide which comes with the new column. Their guidelines supersede these!
  • ·         Columns are consumable items. After a suitable amount of use, the time and materials required to regenerate them may cost more than the purchase of a replacement column. Always have a new, spare column on hand.
  •        Do not overload the column! This is the most common reason for column fouling, flow path contamination and sample carryover issues. In most cases, injection volume should be less than 1% of the column volume (maximum).
  • ·         Protect your detector. Before washing or cleaning the column, disconnect the column outlet line and direct the column to waste only.
  •        Column Storage solutions are not the same as column wash solutions. Never store a column in buffer or ion pairing containing solutions.

For RP supports, if buffers have been used, always start by washing the column down with ultra-high purity water and some organic solvent (e.g. Water/MeOH, 95%/5%) to remove all salts. Use about 10 column volumes to flush these off. Do not wash the column with organic solvents until you have first washed it thoroughly with high-purity filtered water.


Polymeric resins (e.g. PS-DVB) from many manufacturers can effectively be cleaned using 0.1 M Sodium Hydroxide solution or a mobile phase solution containing equal parts of isopropanol (IPA) and 1 to 3 M Guanidine hydrochloride at ~ 50 °C. Optionally, some success has been reported using other solutions such as: 5M Urea (pH 7) buffer solution; 1 M NaCl (pH 7) and even mixtures containing some methylene chloride solvent. Check with the manufacturer first as column damage/plugging may result if their directions are not followed.!

For RP silica based supports (non-SEC), we often start with a series of wash solutions. In most cases, pure water or pure organic solvents such as MeOH or ACN will not remove bound protein (common novice mistakes). An acid, base or even an ion pairing reagent is often needed to clean them. Start simple and monitor.
 
For RP silica based supports (SEC), a high salt buffer solution often releases bound proteins quickly. A mobile phase containing water plus an alcohol (methanol, IPA or ethanol) may also prove effective too.  Optionally, a solution of 0.5 M guanidine hydrochloride may effectively remove bound material.

General Advice: One of the first general wash solutions to start with (especially to remove basic compounds) is a 1% Acetic acid solution in Methanol (50/50). If desired a stronger acid such as 0.1 % Trifluoroacetic acid (TFA) or 0.1 % Formic Acid can be swapped for the acetic acid (where possible, start with a weaker acid). Use a low concentration of acid to achieve a pH of ~ 2.5. This acidic wash can be followed with a neutral solution, or if needed, a later solution where IPA or ACN replaces the MeOH used (50/50).

For extreme cases where the column has been overloaded with protein, a 5 M Urea solution has been proven effective in removing bound protein from silica and polymeric supports too. A word of caution, as the resulting pH of this strong solution may be greater than or equal to pH 9. Many types of silica based RP columns can not withstand strongly basic solutions and the silica inside may dissolve (plugging the column). Start with a lower concentration wash  first. You can always increase it later. Always read the instruction sheet carefully which came with the specific HPLC column to determine if it can be used at these high pH levels. Another salt solution that has shown some promise is 1 M sodium phosphate solution, pH 7.0. Run the salt solutions for about one hour at a moderate flow rate. Follow up all washes with rinses of mixtures of water and MeOH (80/20), then 90% MeOH/Water. 

Please remember that in ALL cases, HPLC columns are consumable items with a limited lifetime. Dispose of them properly when they are damaged or contaminated and replace with a new column. Once you have a fresh clean column to work with, prevent column fouling by developing better quality methods which utilize frequent, properly developed wash methods (using a wash solution which is stronger than your analysis mobile phase), filter all samples and be sure they fully dissolve in solution (100%). *Column fouling is not normal and can be prevented with proper training.