Translator for HPLC HINTS and TIPS for Chromatographers

Saturday, April 9, 2022

Agilent Quaternary Pump (e.g. G1311A ) "Secret" Operator Tip to FLUSH the HPLC Pump in 1/2 the time!

One of the most popular "tips" taught in our Agilent 1100 and 1200-series HPLC training classes shows users how to speed up the daily priming and flushing process of the Quaternary Pump. Many people use these pumps without taking advantage of the Quaternary pump's higher flow capability. If you are not currently using the higher 10mL/min flow rate capability offered by this pump (vs. the Binary pump's 5 mL/min), then you are missing out on a free time saving feature. Please read on to learn how to use this feature.

Based on the HP 1050 pump and introduced in 1995 as the "1100-series" version, the G1311  "Quat" pumps are one of the most popular research grade HPLC pumps found in laboratories today. They are extremely reliable, rugged, easy to operate and service. The Quat pump is driven by an easily accessible, single pump head with an in-series, servo controlled dual plunger and Multi-channel Gradient Valve ('MCGV') for 4-channel solvent proportioning with an active inlet valve (known as the 'AIV', first used in the HP 1050 pump and the reason for this pump's high reliability. No more "sticking" inlet valve issues!). Unlike the Agilent Binary pump (G1312), which uses two separate dual plunger pumps (2-channel) at up to 5.0 mL/min (maximum), the Quat pump offers an extended flow range, up to 10.0 mL/min (maximum). However, most users are not aware of this or do not know how to utilize this higher flow rate feature because the Quat pump defaults to a maximum flow rate of 5 mL/min at initialization. The ability to program the pump to operate at flow rates greater than 5 mL/min requires a "trick" to activate it (which apparently is a secret as we rarely encounter customers who are aware of how to use it). 

Let me share with you why you would want to use this feature, why the feature is hidden to most and of course HOW TO ACTIVATE IT on the Quat pump.

  • Q: Why would you want to run the pump at 5 to 10 mL/min? Semi-prep columns can be run within this flow rate range, but a more common reason to operate at 10 mL/min is for daily system start-up. Anytime you replace or change the mobile phase bottle/solution OR when you startup the HPLC system (each day) one of the very first things you need to do is prime or flush each of the mobile phase channels, one-at-a-time through the system to waste. Air bleeds into the system when it is not used and this procedure primes the lines and pump head with fresh mobile phase preparing it for use. The system's flow path is directed to waste (via the open, prime-purge valve) during this step so back-pressure is not a concern. The higher the flow rate you can use for this flushing step, the sooner you can complete it. If you run the pump at 10 mL/min vs 5 mL/min, then flushing can be completed in half the time. This is especially useful if you have a model G1322A degasser module installed as the internal volume of each degassing channel in the G1322A is 10-12 mLs, requiring extended flushing times (4x channels = 30+ mLs flush per channel) before moving on to the next channel.
  • Q: Why does the Quat pump initialize with a reduced, 5 mL/min maximum flow rate? The Quat pump was designed to meet two different operating pressure ranges. From 0 to 5 mL/min the permitted operating pressure range is 0 - 40 MPa (0 - 400 bar). Above 5 mL/min, the operating pressure range is reduced, 0 - 20 MPa (0 - 200 bar). As most analytical chromatography is performed at flow rates below 5 mL/min, the system initializes using the more practical, 0 - 400 bar range, limiting flow rates to 5 mL/min maximum. The default maximum pressure field is set to 400 bars. You should always change the maximum pressure value from 400 bars to a more realistic maximum pressure (lower value) for your method. Use a maximum value that is appropriate for your own method. *The only time you will want to set it to the maximum value is when conducting a Pump Pressure/Leak test (it must be set to max pressure for testing).
  • Q: When I try and enter a pump flow rate larger than 5 mL/min, the system does not accept it. How do I program the pump to increase the flow rate past 5 mL to 10 mL/min? In order for the system to accept a flow rate of greater than 5 mL/min, you must FIRST set the maximum pressure limit to a value that is 200 bars or less (within the allowed "0 - 20 MPa (0 - 200 bar)" range). Once the maximum pressure limit has been reduced in the method, the system will then allow you to enter a higher flow rate such as 9.999 mL/min (10 mL/min). As long as the maximum pressure alarm is set within this window (200 or less), the pump will allow flow rates above 5 mL/min to be used. Now you can program the pump to flush lines or prime the system at twice the speed of the Binary pump equipped systems (10 mL/min).

Please share this "trick" with other users of the G1311A, G1311B, G1311C versions of this pump so they can maximize their time and productivity. Let us know if you find this tip useful.


Saturday, January 29, 2022

Adjusting the HPLC Gradient Time For Changes in Column Diameter and/or Length (same particle size)

Changes to the column diameter (to scale the method up or down) can be calculated. For an established HPLC method using the same support type (same exact material and particle size) where the column dimensions and flow rate are known. Note: If only the diameter changes and the lengths remain the same (proper linear flow rates used in both cases), then the resulting gradient times will also be similar. If the column lengths change, then the gradient time will change.

Changes to the Gradient Time (Tg2) used for a second column which has a different diameter, "Dc2" and/or length, "Lc2" can be calculated if you know: 

  • Tg1 [Time, of initial Gradient on Column #1];
  • Tg2 [Time of second Gradient on Column #2];
  • Fc1 [Flow Rate of Column 1] ;
  • Fc2 [Flow Rate of Column 2];
  • Dc1 [Diameter of Column 1]
  • Dc2 [Diameter of Column 2];
  • Lc1 [Length of Column 1];
  • Lc2 [Length of Column 2].

        Tg2 = Tg1 x (Fc1 / Fc2) x (Dc22 / Dc12) x (Lc2 / Lc1)

 

Example: Initial Method utilizes a 4.6 x 150 mm, 5u column run at 1.00 mL/min with a 10 minute gradient program and we wish to transfer this gradient method over to a column with a 2.1 mm diameter (ID) x 100 mm column run at 200 ul/min.

   Tg2 = 10 x (1 / 0.2) x (2.12 / 4.62) x (100 /150)

   Tg2 = 10 x (5) x (4.41/21.16) x (0.67) 

   Tg2 =  50 x 0.208 x 0.67

   Tg2 =  6.97 minutes.

The gradient time used on the 2.1 x 100 mm column run at 0.200 mL/min would be ~ 7 minutes (vs 10 minutes on the 4.6 x 150 mm column at 1 mL/min).

 

NOTE: A note about optimized flow rates. If the Column PARTICLE SIZE changes, esp from greater than 3.5 u to less than 3.5 u, then the optimized flow rate may also change too. Please refer to my article;