Column efficiency (as described by Van Deemter) in HPLC is largely a function of dispersion, column particle size and the flow rate of the mobile phase.After a column has been selected, the Flow rate should be optimized for all methods (start with the nominal linear velocity). Once the optimum flow rate range is achieved, little to no advantage in analysis time or solvent savings is found by increasing it (as column efficiency normally decreases at higher flow rates).
From a practical point of view, columns packed with porous 3 to 5 micron diameter supports show only small differences in efficiency as the flow rate is varied above the initial, optimum level (linear velocity). Running at too low a flow rate serves no purpose, increases dispersion/diffusion and delays the peaks from eluting off the column in a timely manner. Higher rates often decrease column efficiency. Once the flow rate has been set within the 'optimized zone', it no longer becomes a variable in HPLC method development.
Many ~ 3 micron supports do demonstrate some ability to maintain optimum efficiency at slightly higher flow rates (e.g. with linear velocities > 1 mm/second), but significant advantages in using higher flow rates to save time and solvent are not obvious unless the particle size is reduced further.
With the much smaller diameter ~ 2 micron particles, column efficiency can be further optimized using higher than "normal" flow rates on standard columns. Columns packed with these smaller porous particles show optimized flow rates at much higher linear velocities (e.g. 2x normal or ~ 2 mm/second for standard analytical sized columns, but experiment using 2 to 5x the normal linear velocity to compare results).
- For example: If your method currently runs at 1.000 mL/min, you may be able to run the same method at 2.000 mL/min OR if your method currently runs at 0.200 mL/min, you may be able to run the same method at 0.400 mL/min or higher using one of the 2.5 or smaller particles.
NOTE: Do Not Optimize HPLC Methods for "Pressure". This goes against basic chromatography fundamentals. Back Pressure is a result of pushing mobile phase through the tubing and column and is not a method development tool or variable. As mobile phase composition changes, so does the pressure. Flow rates should be stable. Work within a pressure range that is high enough to permit the pump(s) to function properly, but below the point in which frictional heating interferes with the method.
Optimization of method resolution, overall analysis time and solvent usage should be considered. The increased efficiency gained from the smaller particle size supports also allows for scaling down the column dimensions (i.e. length, ID or both) too, though a trade-off between overall column efficiency vs. analysis time and/or too high a back-pressure must be addressed to optimize the method and meet the application goals.
Summary: HPLC analytical column flow rate is often ignored in method development (* esp after it has been adjusted to the initial optimum, often 1.0 mL/min for a 4.6 mm ID column), but IF you are using porous HPLC particles that are smaller than 3.5 micron diameter, please be sure to investigate if you should re-optimize the flow rate used in your method / application so you can take advantage of any increases in column efficiency and/or scaling. As with ALL applications using these very small particles, pre-optimization of the HPLC flow path is often needed to achieve many of the available benefits.
No comments:
Post a Comment
ALL Comments are 100% Moderated to prevent SPAM. ANY/ALL SPAM comments are reported to GOOGLE and Automatically DELETED (They will NEVER appear on this BLOG).