One of the most common HPLC preventative maintenance parts is the injector valve rotor seal. Worldwide, the majority of these chromatography parts are produced by Rheodyne (IDEX) or Valco Instruments (VICI) and used by the major instrument manufacturers in their products. These valve seals are critical to maintaining a leak free, high pressure seal inside the injector. They are subjected to a lot of wear and chemical exposure with use. They have a finite lifetime which may be very short, in some applications (a few months) or last for many years in others. *The most common reason for rotor seal damage is a lack of flushing when buffers are used. Regular flushing down of the flow path (without the buffer) is required to maintain a clean flow path. Buffer deposits and crystals scratch and damage the rotor surfaces. Depending on the specific use and application, rotor seals are often replaced as a preventative measure once every 6 or 12 months. They should also be replaced whenever they are scratched, heavily worn, no longer sealing well, leak or become contaminated. Failure to maintain your injector's parts may lead to HPLC carry-over contamination problems.
The choice of
rotor seal material should be based on: (1) the types of chemicals it will come
into contact with; (2) the working pH range; (3) the temperature range.
- Note: When choosing a valve rotor seal material, please refer to the valve manufacturer's information, compatibility and advice. Blends and properties may vary between vendors so always verify compatibility with them before use.
Common HPLC Rotor Seal Material Types:
Vespel ®: Chemically, this is a polyimide blend (DuPont). One of the most widely used materials for HPLC valve rotor seals. It has excellent chemical compatibility with most HPLC mobile phases, excellent temperature stability and a pH limit of 10. An excellent choice for most applications.
Tefzel ®: Chemical name, ethylene-tetrafluoroethylene (aka, "ETFE"). It has excellent chemical compatibility with most HPLC mobile phases and a higher pH limit of 14. Tefzel's preferred applications are where very high (>9) or very low (<3) pH solutions or mobile phases are used. Not compatible with some chlorinated solvents and in most forms it has a temperature limit of 50°C.
PEEK: Chemical name, polyether-ether ketone. Known for applications where biocompatibility and / or high temperatures are of concern. Like Tefzel, it has excellent chemical compatibility at room temperature with most HPLC mobile phases. Most vendors report a working pH range between 1 and 14. Unlike Tefzel, it has a much higher temperature limit (i.e. 100°C or higher), but its resistance to some chemicals appear to degrade with increasing temperature. Contraindicated where it will come into contact with solutions of THF, methylene chloride, DMSO or concentrated acids (i.e. nitric or sulfuric). Some sources have observed problems with chloroform as well, especially with PEEK tubing, so it may not be recommended for those applications.
For more
information on troubleshooting HPLC injector valves, please refer to this
linked article, "Troubleshooting
HPLC Injectors (Manual and Automated)".