When we perform gradient HPLC analysis, the mobile phase composition is changed over a period of time. The mobile phase is mixed in real time by the pump(s), mixer and/or valves, then transported to the injector and finally, on to the head of the HPLC column. The total volume of liquid contained between where the mobile phase is mixed and the head of the column helps us determine when the newly mixed solution arrives at the column head (it is not instantaneous). This delay is often referred to as the gradient delay time (or delay volume) and its value will vary for different HPLC systems due mainly to differences in tubing dimensions used, pumping system type and the design of the flow path.
The HPLC "Hints and Tips" found here will be of interest to anyone performing HPLC, UHPLC (UPLC), LC/MS, SFC, CE or GC analysis. Many of these free tips, taken from professional classes that I teach, discuss fundamental to advanced level chromatography concepts in a practical way. Occasionally, I will also include laboratory computer related tips here too. Please "follow" this blog to receive updates of new posts. Hint: Type keywords into the SEARCH bar to quickly find other articles.
Translator for HPLC HINTS and TIPS for Chromatographers
Saturday, February 4, 2017
Determine the HPLC System Dwell Volume (Gradient Delay Volume)
When we perform gradient HPLC analysis, the mobile phase composition is changed over a period of time. The mobile phase is mixed in real time by the pump(s), mixer and/or valves, then transported to the injector and finally, on to the head of the HPLC column. The total volume of liquid contained between where the mobile phase is mixed and the head of the column helps us determine when the newly mixed solution arrives at the column head (it is not instantaneous). This delay is often referred to as the gradient delay time (or delay volume) and its value will vary for different HPLC systems due mainly to differences in tubing dimensions used, pumping system type and the design of the flow path.
Monday, July 4, 2011
HPLC to UHPLC Conversion Notes (Column Dimensions, Flow Rate, Injection Volume & System Dispersion)
I must answer twenty or so questions each week in the area of UHPLC. The most common questions deal with selection of an UHPLC column and making adjustments to a method for the changes which effect: (1) Column Dimensions; (2) Flow Rate; (3) Injection Volume and (4) System Dispersion. The good news is that some of these questions can be answered with some basic math while others just require a basic understanding of how the system works.
(1) COLUMN DIMENSIONS: Let's start by making things as simple and brief as possible (this is supposed to be a "hint & tip", not a thirty page article). When initially converting from a convention HPLC column (e.g. with 5 micron particles) to an UHPLC column (e.g. with 1.9 to 3 micron particles), initially select a column with the same I.D. and length for the calculation. This way only the particle size changes. *I like to change one variable at a time. If you would like to change the column length to take advantage of some of the increased efficiency (and decrease the pressure!) which results from smaller particles, then please refer to the following equation.
EQUATION A: 'Lc2' = ('Lc1' * 'p2') / 'p1'
[ 'Lc1' = Length of Column #1 in mm; 'Lc2' = Length of Column #2 in mm; 'p1' = particle size of Column #1 in microns; 'p2' = particle size of Column #2 in microns].
Example: Column # 1 is a standard HPLC column; 4.6 mm x 250 mm (5u) Column. You want to find out the length of an equivalent column which uses 1.9 micron particles instead of the 5 micron particles.
'Lc2' = (250 * 1.9) / 5 ; Answer is: 'Lc2' = 95 mm. *So a 10 cm long column would be a good choice here.
(2) FLOW RATE: Flow rate is directly proportional to column diameter and as we saw above in Equation A, the particle size can also affect it too. If you keep the column length and internal diameter the same, then the linear flow will be unchanged with the same particle size. A change to the particle size alone will change the flow rate as follows: 'Fc2' = 'Fc1' x ('p1'/'p2').
A change to a smaller diameter column to compensate for the improved efficiency will require a change to the original flow rate to preserve the linear velocity. Please refer to the following equation.
EQUATION B: 'Fc2' = ('d2' / 'd1')^2 * 'Fc1'
['Fc1' = Flow Rate of Column #1 in ml/min; 'Fc2' = Flow Rate of Column #2 in ml/min; 'd1' = Column #1 Diameter in mm; 'd2' = Column #2 Diameter in mm].
Example: Column # 1 is a standard 4.6 mm ID Column. You want to find out what the linear flow rate should be if you use a smaller diameter column (2.1mm in this example).
'Fc2' = (2.1/4.6)^2 * 1.000 ; Answer is: 'Fc2' = 0.208 ml/min. *A flow rate of 200 ul/min would be fine.
However, one other factor should be considered. The optimum flow rate for sub 2.5u particles are often about double that of the "normal" linear flow rate used with conventional particles (>2.5u). Evidence for this has been shown through analysis of the van Deemter curve with the tiniest particles showing much flatter curves. Retention (K prime) can often be maintained by combining twice the normal flow rate and speeding up the gradient time by a factor of 2. So a method utilizing std sized particles with a linear flow rate of 0.200 ml/min might benefit from a faster flow rate of 0.400 ml/min and a twice as fast gradient composition change.
(3) INJECTION VOLUME: A change in the column dimension may require a change to the injection volume (note: "volume" and concentration are two different things. If the solution concentration remains the same and you inject less, the on-column sample concentration will also be less). The smaller the internal volume of the column, the smaller the injection volume. To calculate the linear change in volume, please refer to the following equation.
EQUATION C: 'V2' = 'V1' * {('d2'^2 * 'L2') / ('d1'^2 * 'L1')}
['V1' = Injection Volume #1 in ul; 'V2' = Injection Volume #2 in ul; 'L1' = Column #1 Length in mm; 'L2' = Column #2 Length in mm; 'd1' = Column #1 Diameter in mm; 'd2' = Column #2 Diameter in mm].
Example: Current injection volume is 10 ul. Column # 1 is a standard 4.6 mm ID x 250 mm Column. You want to find out what the equivalent injection volume should be for a 2.1 mm ID x 150 mm column.
'V2' = 10 * (2.1^2 * 150) / (4.6^2 * 250) ; Answer is: 'V2' = 1.25 ul.
(4) SYSTEM DISPERSION: When converting HPLC methods to "UHPLC" methods, few parameters effects the results obtained more than the HPLC system's System Dispersion. The volume of liquid that is contained between the injector needle and flow cell (with the column removed or by-passed) is know as the system dispersion volume. This volume is determined by how the specific HPLC is designed and plumbed. On most HPLC systems, it can be easily changed and optimized to fit the specific application desired and only requires that you have a solid understanding of how the HPLC system works. The choice of connection tubing ID and length, how the autoinjector is programmed, its loop size and the detector's flow cell volume all contribute to the system dispersion volume. In the same way that changes to the total column volume can effect the peak shape and resolution, the internal system dispersion volume also contributes to the results.
With standard sized analytical columns (i.e. 4.6 x 250 mm), the typical HPLC's system volume is so small relative to the volume of the column (e.g. 100 ul system dispersion vs 2900 ul column volume, or 3.5%) that it does not negatively impact the chromatography. However, anytime we utilize a tiny HPLC column whose column volume is a fraction of that found in a standard column (i.e. 100 ul system dispersion vs 2.1 x 50 mm column with 120 ul volume), diffusion and band spreading can quickly become so significant that effective plate numbers are quickly reduced below values found on a standard sized column. As column volume decreases (and approaches the system volume) the total system dispersion volume must also decrease. In general, try and keep the system dispersion volume at or below 10% of the column dead volume. This is most easily accomplished by reducing the number of connections and fittings used, reducing the lengths of all tubing used, using much narrower ID tubing (e.g. 0.12 mm vs 0.17 mm ID), reducing flow cell volume and reducing the flow-through volume in the autoinjector (i.e. loop size, needle seat, etc). The injector is often the largest contributor to the system dispersion so concentrate efforts here (e.g. after injection, switch the loop out of the flow path).
Sunday, May 1, 2011
Determination of HPLC Column Void Volume / Dead Volume, Dead Time (T zero):
Column Hold-up Volume, Column Dead Time or 'Column Void Volume' (the preferred name) are all different terms we apply to find the internal volume of a packed column (divided by the flow rate and usually expressed in minutes for the Column Void Time). You must know what this value is BEFORE starting to run an HPLC method or perform liquid chromatography. The value for column void volume changes for different column dimensions and different column support types (e.g. fully porous, superficially porous etc) .
Are you peaks or samples eluting at or near the column void volume? If so, for most modes of chromatography, this implies that no chromatography has taken place and no HPLC method has been developed (SEC/GPC separate based on hydrodynamic volume, so elution at or near the column volume means the sample(s) were excluded from the column). Individuals with little to no chromatography training or experience often make this mistake and create methods which show poor retention. Make sure your methods are designed to retain each sample for a long enough time period on the column (K prime). How do you know how long is long enough? Start by estimating the Column Void Volume (use our table or calculate it for an estimate) then, calculate the K prime value for your sample. The K prime for each peak should be at least 1.5 (>2.0 is the accepted standard for most regulatory authorities) for the method to be useful and selective. *A more accurate value of column void volume will be found by measuring the void volume of your column (please read on).
Knowing the Column Void Volume and the Flow Rate used allows you to calculate the Column Void Time (which is the most useful initial value). Determining the column void time or T0 ("Tee Zero" as we call it), is necessary to find other important chromatography values such as: the Resolution, Separation Factor and Capacity Factor (K prime aka: "K1") in a chromatography separation. Ideally, it is measured by injecting a sample which is unretained by the column & mobile phase (it passes right through the column support with little to no interaction). It may also be easily estimated for most fully porous, spherical, bare or coated silica supports if you know a few physical specifications of the column and media used. You should first estimate it, then measure it (the two values should be close, +/- 15%). Note: A practical "tip". You can also estimate T0 by noting when the small injector valve pressure peak ('blip') appears on the baseline. It results from the pressure change which occurs from switching the injection valve from the "load" to "inject" positions. Use a low UV wavelength to observe this deflection on the baseline.
Here is short list of typical HPLC column dimensions and their associated estimated void volumes for fully porous silica supports. At a flow rate of 1.000 ml/min these values would also be the same as the void time in minutes.
COLUMN DIMENSIONS (I.D. x Length (mm)) VOID VOLUME (ml)
2.1 x 50 0.12
2.1 x 100 0.24
2.1 x 150 0.37
2.1 x 250 0.61
2.1 x 300 0.73
4.6 x 50 0.58
4.6 x 100 1.16
4.6 x 150 1.75
4.6 x 250 2.90
4.6 x 300 3.49
10.0 x 100 5.50
10.0 x 150 8.25
10.0 x 250 13.75
10.0 x 300 16.49
- Column Void Volume Equation for Std Sized, FULLY Porous Supports:
- Column Void Volume Equation for SUPERFICIALLY Porous Supports (e.g. Fused-Core, Core-Shell etc):
Note: Column Diameter & Length are in mm. Volumes are estimates (always measure to find the actual value).
[Note: All you need is the column's length and ID to estimate it. For most fully porous supports, use a 'Pore Volume' value of 0.70 in the above equation. This is the most commonly measures pore volume found for non-encapped, fully porous spherical bare silica support (please check with the manufacturer for the actual value of your support). For superficially porous supports, use a value of 0.50. Estimating the value will often get you close to the measured value, but due to the unique chemistries used to prepare supports, it is only an approximation.
Always measure the actual void volume of your specific HPLC column with a compound which is unretained by your column. For RP applications which utilize at least 20% organic, Uracil or Thiourea are often used, but some inorganic salts (e.g. sodium nitrite and sodium nitrate) have also been shown to work as well. When determining the "Column Void Volume", you are really measuring the void volume of the column plus any extra-column volume from the injection volume plus all lines connecting the injection to the column and the column to the flow cell. Note: This is very different from the "System Dwell Volume" which includes the volume from the pump (or gradient valve) to the column head.
A more detailed version of this table with other common HPLC Column Sizes and Tubing Volumes for capillary lines are available at the following links (Link #1) or (Link #2).