Translator for HPLC HINTS and TIPS for Chromatographers

Showing posts with label Flow. Show all posts
Showing posts with label Flow. Show all posts

Saturday, June 29, 2019

Backpressure Changes, Pressure Drop from HPLC Tubing Selection (0.007, 0.005, 0.010")


In previous articles we have discussed how the choice of column particle size directly changes the system backpressure. Smaller particles generate higher back-pressures. We have also discussed the importance of HPLC tubing selection to minimize delay volume and diffusion within the HPLC's laminar flow path. Let us now focus on how the tubing's internal diameter and length impacts the total HPLC back-pressure (or pressure drop) observed. 

Key Points:  
  1. Try to optimize the plumbing of your HPLC system.  
  2. HPLC Tubing lengths between connections (or HPLC modules) should always be as short as possible. 
  3. Pressure drop is dependent on the tubing length and inner diameter. Doubling the inner diameter of the tubing will decrease the pressure by a factor of 16.


Once the HPLC tubing connection lengths have been minimized, the next critical dimension which affects band broadening, delay volume and peak-width is the internal diameter (ID) of the tubing. The tubing selected should be narrow enough to reduce the undesirable spread of the peak(s) inside the tubing, but not be so narrow or restricted to result in clogs or obstructions (which is why good chromatography guidelines should be followed insuring that each sample is fully dissolved and filtered before injection). Commonly used tubing ID’s for most analytical HPLC systems are: 0.010” (0.25 mm), 0.007” (0.17 mm) or 0.005” (0.12 mm). By far, 0.007” (0.17 mm) is the most commonly used size for modern analytical HPLC analysis as it offers a compromise between low delay-volume and modest back-pressure (with fewer clogs). However, in addition to the much lower internal volumes which accompany the narrower ID’s, the pressure drop measured across equivalent lengths of tubing may change dramatically and this should be noted during set-up, selection and operation. Take the time to learn what "normal" backpressures are under specified conditions.
 
Understanding how the HPLC system backpressure changes as the internal diameter of the tubing varies is extremely useful in troubleshooting a number of common HPLC problems.

Let us compare the pressure drops measured across three popular HPLC tubing ID’s of the same length (40 cm) using common HPLC mobile phase solvents. This table will help illustrate the observed backpressure changes that the tubing ID and liquid have on the pressure drop.

PRESSURE DROP (in bars):

SS Capillary Tubing, 40 cm length, flow rate 1.000 mL/min.

Mobile Phase / Tubing ID
Water
ACN
MeOH
MeOH/Water (1:1)
IPA
0.010” (0.25 mm)
0.7
0.2
0.4
1.2
1.5
0.007” (0.17 mm)
2.7
1.0
1.6
5.1
6.2
0.005” (0.12 mm)
10.4
4.0
6.3
19.1
24

Note: Pressure drop is also a function of tubing length so if we halve (1/2) the length of tubing used, we also will reduce the pressure drop by one-half. 

Note the four-fold change that narrowing the tubing ID has at each ID reduction. The change is more dramatic when viscous solutions are used (i.e. MeOH/Water or IPA). If you re-plumb any part of your HPLC system with new tubing, then awareness of this physical change will assist you in troubleshooting many types of HPLC problems (to know which types of pressure changes indicate a real problem and which types of pressure changes are normal). Changes to the overall length or ID may result in noticeable changes to the total system backpressure. As an experienced chromatographer knows, when HPLC solvents are mixed together (e.g. gradient analysis) the pressure does NOT always follow a linear progression. In some cases, a reaction occurs between the solutions resulting in an overall change to the final viscosity of the mixture which may not be expected or understood by novice chromatographers (e.g. mixtures of MeOH/Water and ACN/Water are very well know examples which show these properties). 
 
You can download a free, more detailed table of 'HPLC Tubing Backpressure Examples' in PDF Format at this link:

Saturday, March 23, 2019

HPLC to UHPLC Conversion Notes (Gradient Time Program Adjustment)

In an earlier article we discussed how to adjust the flow rate, injection volume and column dimensions when scaling an HPLC method UP or Down. The formula's needed to do this are fairly simple. If we adjust for changes in the column dimensions or flow rate, what types of changes are needed to adjust the gradient time? The formula to make this adjustment is also very simple. Here is the information you need.

Terms Used in Formula:


Time in minutes, Gradient (Initial): Tg1
Time in minutes, Gradient (New):   Tg2
Flow Rate in mL/min, Column (Initial): Fc1
Flow Rate in mL/min, Column (New): Fc2
Column Diameter, mm (Initial): Dc1
Column Diameter, mm (New): Dc2
Column Length, mm (Initial): Lc1
Column Length, mm (New): Lc2


  • Tg2 = Tg1 x (Fc1/Fc2) x ((Dc22) / (Dc12)) x (Lc2 x Lc1)

Here is an example problem to solve for. 

If we start with a flow rate of 1.000 mL/min (Fc1) on a 4.6 x 250 mm column with 5 micron support (Dc1 & Lc1) and have an initial Gradient Time of 10 minutes (Tg1), then what would the new gradient time be if we switched to a sub 2 micron support in a 2.1 x 50 mm column (Dc2 & Lc2) at 0.200 mL/min (Fc2)? 

To solve the equation we will plug-in the values for each part of the equation separately, then multiply them to obtain the result.

  (Fc1/Fc2):    1.000/0.200 = 5

  (Dc22) / (Dc12)  4.41/21.16 = 0.21

   (Lc2 x Lc1) = 50/250 = 0.20

  Tg2 = 10 x 5 x 0.21 x 0.20 

  Tg2 = 2.10 (or 2.10 minutes)

If a 2.1 x 50 mm column was substituted for the 4.6 x 250 mm AND the flow rate was changed from 1.000 mL/min to 0.200 mL/min, then the initial programmed gradient time of 10 minutes would be changed to 2.1 minutes

Saturday, October 29, 2016

Notes on Cleaning bound Protein from RP HPLC columns:



First, a few comments:

  • ·         Before proceeding with any column regeneration or cleaning procedures, always refer to the specific advice provided by the column manufacturer. Approved maintenance and cleaning instructions can often be found in the product guide which comes with the new column. Their guidelines supersede these!
  • ·         Columns are consumable items. After a suitable amount of use, the time and materials required to regenerate them may cost more than the purchase of a replacement column. Always have a new, spare column on hand.
  •        Do not overload the column! This is the most common reason for column fouling, flow path contamination and sample carryover issues. In most cases, injection volume should be less than 1% of the column volume (maximum).
  • ·         Protect your detector. Before washing or cleaning the column, disconnect the column outlet line and direct the column to waste only.
  •        Column Storage solutions are not the same as column wash solutions. Never store a column in buffer or ion pairing containing solutions.

For RP supports, if buffers have been used, always start by washing the column down with ultra-high purity water and some organic solvent (e.g. Water/MeOH, 95%/5%) to remove all salts. Use about 10 column volumes to flush these off. Do not wash the column with organic solvents until you have first washed it thoroughly with high-purity filtered water.


Polymeric resins (e.g. PS-DVB) from many manufacturers can effectively be cleaned using 0.1 M Sodium Hydroxide solution or a mobile phase solution containing equal parts of isopropanol (IPA) and 1 to 3 M Guanidine hydrochloride at ~ 50 °C. Optionally, some success has been reported using other solutions such as: 5M Urea (pH 7) buffer solution; 1 M NaCl (pH 7) and even mixtures containing some methylene chloride solvent. Check with the manufacturer first as column damage/plugging may result if their directions are not followed.!

For RP silica based supports (non-SEC), we often start with a series of wash solutions. In most cases, pure water or pure organic solvents such as MeOH or ACN will not remove bound protein (common novice mistakes). An acid, base or even an ion pairing reagent is often needed to clean them. Start simple and monitor.
 
For RP silica based supports (SEC), a high salt buffer solution often releases bound proteins quickly. A mobile phase containing water plus an alcohol (methanol, IPA or ethanol) may also prove effective too.  Optionally, a solution of 0.5 M guanidine hydrochloride may effectively remove bound material.

General Advice: One of the first general wash solutions to start with (especially to remove basic compounds) is a 1% Acetic acid solution in Methanol (50/50). If desired a stronger acid such as 0.1 % Trifluoroacetic acid (TFA) or 0.1 % Formic Acid can be swapped for the acetic acid (where possible, start with a weaker acid). Use a low concentration of acid to achieve a pH of ~ 2.5. This acidic wash can be followed with a neutral solution, or if needed, a later solution where IPA or ACN replaces the MeOH used (50/50).

For extreme cases where the column has been overloaded with protein, a 5 M Urea solution has been proven effective in removing bound protein from silica and polymeric supports too. A word of caution, as the resulting pH of this strong solution may be greater than or equal to pH 9. Many types of silica based RP columns can not withstand strongly basic solutions and the silica inside may dissolve (plugging the column). Start with a lower concentration wash  first. You can always increase it later. Always read the instruction sheet carefully which came with the specific HPLC column to determine if it can be used at these high pH levels. Another salt solution that has shown some promise is 1 M sodium phosphate solution, pH 7.0. Run the salt solutions for about one hour at a moderate flow rate. Follow up all washes with rinses of mixtures of water and MeOH (80/20), then 90% MeOH/Water. 

Please remember that in ALL cases, HPLC columns are consumable items with a limited lifetime. Dispose of them properly when they are damaged or contaminated and replace with a new column. Once you have a fresh clean column to work with, prevent column fouling by developing better quality methods which utilize frequent, properly developed wash methods (using a wash solution which is stronger than your analysis mobile phase), filter all samples and be sure they fully dissolve in solution (100%). *Column fouling is not normal and can be prevented with proper training.