Translator for HPLC HINTS and TIPS for Chromatographers

Showing posts with label Overloading. Show all posts
Showing posts with label Overloading. Show all posts

Saturday, July 22, 2023

HPLC Injection Volume: What Should I Dilute It In and How Much Sample Can I Inject?

HPLC Injection Volume and Solution Tips: For best results, the choice of injection solution and amount must be carefully selected. Successful HPLC & LC-MS methods shall observe good chromatography fundamentals. 

  • How much sample can I inject on my column? The HPLC injection volume must be carefully selected to avoid overloading the column and also maintain good quality peak shape (Good peak shapes, Gaussian are ideal, are preferred for accurate integration and quantitation). Too large an injection volume and the peak shape may be broad and result in co-elution, column fouling and/or poor reproducibility. Too low an injection volume may lead to no-detection, poor reproducibility and/or inaccurate integration. Choose an appropriate Injection Volume (and concentration) that is appropriate for the COLUMN and Method used (their is no universal answer as they depend on YOUR column and method). Start, by learning what your HPLC column's "dead" volume is (Determining the HPLC Column Volume Link here).  As a general guideline, keep the volume low and inject no more than ~ 1% of the column's dead volume (maximum for most columns is ~ 1 to 2 %, but if the peak shape is excellent, sometimes up to 3% is possible). The actual capacity will be different for different column support types, dimensions etc, so it is best not to guess. Use a volume that is within the injector's most accurate range (for most auto-injector's, the optimal range may be found away from the extreme limits, often between 20% and 80% of capacity, but please refer to the documentation for your injector for specifics). Once an acceptable volume has been identified, then you can vary the concentration to find the best sample load for your analysis conditions.
    • NOTE: To find the true and correct answer to "How Much Can I Inject (Load) onto my column" requires that you conduct a 'Loading Study' [To run a loading study you will prepare a batch of samples of increasing concentrations levels which can be individually injected, then evaluated on YOUR column, using YOUR method. This is how we determine the MAXIMUM amount possible which can be loaded and still provide good quality results. All other methods are just estimates.
  • What should I dilute my sample in? Dilute samples using the mobile phase solution (in the case of gradient compositions, use the "initial" mixture to avoid precipitation). Your sample(s) should be FULLY dissolved in the mobile phase and not in a solution that is chemically incompatible with the flow path or is "stronger" in elution strength than the initial mobile phase. The diluent should not interfere with the analysis or loading of the sample onto the column. Example: If your method is 100% aqueous, then do not inject the sample(s) in a solution that contains organic solvent (i.e. ACN). *Peak fronting, splitting, precipitation and/or distortion (broad shapes) may result from using a diluent that is stronger than the mobile phase.
  • My sample solution is cloudy or has "stuff" floating in it. ONLY Inject sample solutions which are 100% fully dissolved, in-solution. Injecting samples which have precipitated out of the solution OR which are not fully dissolved in solution (100%) may result in line obstruction, clogging, column fouling and invalid data collection/results. Take the time to find a mobile phase that your sample fully dissolves in to avoid problems. Troubleshooting and repairing an HPLC system for clogs and/or column contamination is both time consuming and expensive.
  • Filter sample solutions to prevent clogs and reduce column fouling. Make sure the sample is first fully dissolved in the solution and do not use a 'filtering' step as a cheat to remove undissolved sample. Filtering is used to protect the system from particles that we can not easily observe which may clog the system. Please refer to the article; "Syringe Filter Selection for HPLC or LC/MS samples"; for more information on filter selection.
  • Improve Injector reproducibility: Leave the vial cap slightly loose so it does not make a full seal. *This prevents a vacuum forming inside the vial, resulting in injection volumes which may be lower than the selected volume. "Loose caps" can greatly improve accuracy and reproducibility when larger OR multiple volumes are injected from the same vial. Additionally, if the total sample vial volume is very small (i.e. ~ 200 ul), utilize a vial insert of the correct dimensions and type for improved accuracy. When using vial inserts, check that the needle height is correct for the vial insert used.  Do not use the entire sample volume! Never use more than 90% of the vial volume or air may be aspirated resulting in invalid data collection.
  • Prevent sample carryover problems by regularly inspecting and servicing your HPLC injector (Manual valve and Autoinjector maintenance tips will be found at this LINK). Replace common wear parts such as rotary valve seals and needle seats on a regular basis (Do not "clean" and re-use seals). Carryover troubleshooting Tips will be found at this LINK.
  •  Calibration Volumes for Quantitation: When creating a new calibration table for a group of standards, use the SAME VOLUME for each standard and vary the concentration ("calibration level") only with each vial. As we have seen, injection volume is a variable which may change peak shape and integration accuracy. If you inject the same volume of liquid for all standards (and samples too), then you remove this variable. Using the SAME injection volume for all standards and samples helps to reduce problems. *Note: Thought it may not be approved, if you thoroughly test varying the injection volume across the range used for the calibration to demonstrate no undesirable changes to peak shape, loss of resolution/separation, and it is reproducible and accurate for the analysis method, then you can vary injection volume. Link to: HPLC Calibration Article.
     

 

Please note that these are general guidelines only and the mode of chromatography (e.g. NP/RP/HILIC/SEC), scale (prep vs. analytical) and/or specific method used must be optimized for best results. Follow these basic guidelines to prevent analysis problems, prolong column and system lifetimes and increase reproducibility and accuracy.

Saturday, October 19, 2019

HPLC PEAK Fronting and Tailing, Common Reasons For It

All users of HPLC need to know and be familiar with the correct terms used to describe non-Gaussian shaped peaks. Two of the most common undesirable peak shapes, peaks that show "Fronting" and peaks that show "Tailing" indicate problems with the HPLC method.  A quick refresher on why you may observe an HPLC peak front or tail on the chromatogram follows. 

Peak FRONTING: First, let us define what peak fronting looks like. The leading edge (front) of the peak is vertical, straight up and non-Gaussian in shape. This sharp increase in signal is easy to spot. 

Common Reasons for Peak FRONTING:
  • Poor sample/peak capacity. In other words, too low a K prime (not enough retention on the HPLC column) resulting in no chromatography taking place. To solve this problem you must develop a proper HPLC method which first retains the compound(s) of interest, holds them long enough to obtain an acceptable K prime and resolve them away from other peaks, then elutes them off the column.
  • Injection Solution Too Strong:Your sample(s) should be dissolved in the mobile phase and not in a solution that is "stronger" in elution strength than the mobile phase. Example: If you method is 100% aqueous, do not inject the sample in a solution with organic solvent. Follow fundamental good chromatography guidelines.
  • Column Fouling / Overloading of sample. When the HPLC column is overloaded with sample, the peak shape will show fronting. Decrease the injection volume and/or concentration, as appropriate, in 10x graduations until the peak shape is normal.
  • Saturation of the Detector: Just as with overloading the column the peak shape may change, overloading the detector's measuring range may also result in saturation of the signal and loss of accuracy. Decrease the injection volume and/or concentration, as appropriate, in 10x graduations until the peak shape is normal and back on-scale.
Peak TAILING: First, let us define what peak tailing looks like. The trailing edge (tail) of the peak slowly drops off towards the baseline and  is non-Gaussian in shape. For those with GC experience it appears similar to a peak that "bleeds" and continues to interact with the column for an extended period of time.

Common Reasons for Peak TAILING:
  • Flow path Diffusion (from extra-delay volume). Poorly swaged fittings/connectors, a column with a void, incorrectly sized capillary connection lines may all contribute to peak tailing. Optimize the flow path, column and connections.
  • pH dependence for ionizable compounds. If the sample is easily ionized and the difference between the pka of the sample and the mobile phase is less than 2 pH unit, tailing may result. Being sure to work within a safe pH range for your column, increase or decrease the mobile phase pH to be > 2 pH units away from the sample's pka to reduce tailing.
  • Type 'A' silica or heavy metal contamination of the support. Many older style column supports did not use ultra-pure, heavy metal free packing material. These material often interacted with the sample on the column resulting in changes in retention, The use of more modern type 'B' or 'C' packings has eliminated many of these problems.
  • Residual silanol groups present on support. As with the earlier type 'A' supports, non fully end-capped supports with residual silanol groups often resulted in secondary, extended retention effects. Use of more modern, fully end-capped, ultra-high purity packing materials (and/or mobile phases which better address these residual groups) often allow Gaussian peak shapes without the need for many additives.
  • Column Fouling / Overloading of sample. When a column is not washed of all retained material after each analysis, it may build up over time and change the surface chemistry of the support. This may lead to changes in retention, especially delays in both binding and elution. Wash, regenerate or replace the column to solve.
You may also be interested in reading a related article; "Two Common HPLC Problems and their Causes (Sudden changes to either the HPLC Backpressure or Peak Shape)".

Saturday, September 24, 2016

HPLC Peak Splitting. Common Reasons For It



True "Split" HPLC peaks, not resulting from co-elution of another peak, can be caused by a number of chromatography problems. Here are a few examples and their solutions:

  1. Sample overload. Sample overloading is one of the most common reasons for observing peak "splitting". Reduce the sample concentration by factors of ten to see if the peak shape improves. 
  2.  A poor quality HPLC method. Poor quality methods which do not use mobile phase solutions which are at an appropriate pH (*If the pH of the mobile phase is close to the pKa of the sample, then split peaks may result); which does not dissolve the sample in (should be fully soluble) or are unstable, show sample or mobile phase precipitation can cause this effect. Always check solubility before starting.
  3. A partially plugged or fouled column. A dirty or fouled column (from not washing down properly with a solution which is STRONGER than the mobile phase). Analysis methods should be followed by separate wash methods to remove all bound material and any late eluters,
  4. Wrong injection solution. Peak splitting may be the result of dissolving and injecting your sample in a solution that is stronger than your mobile phase. Dissolve and inject samples in the mobile phase or in a solution which is a slightly weaker solution (not stronger).
  5. A poorly packed column, void at column inlet, a dirty frit or poor mechanical connection (i.e. improperly swaged fitting). These types of structural or mechanical defects can each result in peak "splitting" (all of these are less common today than in the past using modern HPLC columns). When present, a dirty inlet frit can be replaced with a new one, or the column can sometimes be backflushed to remove any accumulated material. Connections should always be double checked.
  6. Detector data rate set too low. Too few peaks collected over time may result in integration errors and inaccurate peak symmetry problems. Read more about how to determine the best data collection rate at this link.

Saturday, February 28, 2015

Carry-Over (Carryover) Contamination in HPLC and LC-MS Systems

"Carry-over" is a term used to describe a type of sample contamination which causes sample peaks to re-appear in later runs which do not actually contain the sample (e.g. blank runs). The contamination can last for several sequential runs, often decreasing in amount after each injection (which is a key observation when troubleshooting). When proper instrument training has been provided, modern HPLC system designs make carryover extremely rare, but when it does appear, the contamination can be due to: (1) A lack of HPLC maintenance; (2) Overloading samples which foul the column; (3) Poor Wash Vial Usage and/or Sample Vial Selection; (4) Inadequate operator training in how to set-up and use the chromatography system. *Note: Proper operator training greatly reduces the chances of contamination and is the most overlooked reason for the problem.

The Types of HPLC Carry-Over Contamination; Why They Occur and How To Reduce Them:

(1) A Lack of HPLC Maintenance: Most auto-injector valves rely on a rotary seal to move the sample from the needle loop to the flow path of the system. The components within these valves wear out and should be inspected at least every 6 months and replaced when needed. Also, always check the needle seat and needle for signs of wear or leaking. Note: Look for signs of leaks by the injector. Leaks always indicate a problem and should be fixed immediately. Don't run samples when you have leaks. Your method and data obtained will be invalid. Any worn parts should be replaced and the system performance tested. One of the most common causes of carry-over is due to a worn sample injector valve rotary seal. A worn seal can allow sample to be retained in the worn grooves, in-between injections, resulting in sample peaks appearing in subsequent runs. Additionally, buffer salts can lodge between the seals causing leaks or carryover. Routine HPLC service and, if applicable, flushing of all buffers/salts every day can eliminate these issues.

(2) Column Fouling / Overloading of Sample: If you inject too high a concentration of sample and overload your column with material, then it is possible that your column will continue to bleed sample long after the analysis is over. This also happens when the sample has a high affinity for the support you have chosen too. Failure to regularly flush and clean your HPLC column on a regular basis can also result in a similar problem as retained material is released from the column over time. Avoid this problem by performing a loading study to determine how much material can be effectively loaded on to the column. Next, create a wash method which utilizes a stronger solvent than your method (often utilizing a gradient) which will wash away any strongly retained material in between runs. This is critical if you are running an isocratic method as material will be retained on the column and must be washed off at frequent intervals using a stronger wash solution. *When using only isocratic methods, people often do not initially observe carry-over problems (because the sample just sticks to the column and accumulates over time). When the solvent strength is changed or the method is revised to a gradient, then the problems start... Avoid the problem by selecting the right column (which retains, then elutes ALL of the sample), not overloading the column (do a loading study) and washing the column down with a stronger solution that fully dissolves (not precipitates out) any remaining material off the column after each run.

(3) Wash Vial Usage and/or Sample Vial Selection: If you are using a modern high-pressure, "Flow-Through" design autoinjector (e.g. Agilent 1100, 1200, 1260, 1290), then carryover is rarely an issue as these modern injectors use a high pressure pump to aspirate and inject the samples directly into the flow path, reducing the need for any wash stage. The entire HPLC's injection flow path is continuously washed with mobile phase during the analysis run. This dramatically reduces the chances of any sample re-appearing in later runs. The need for a separate wash vial is nearly eliminated in this way as the needle, needle seat, loop, injector pump and valve are all flushed clean during each method. Many older auto-injector designs utilize either a low pressure injector (glass syringe) or injector pump which is not part of the main flow path. These injectors benefit from a separate wash vial as they are not continuously cleaned. Effective cleaning requires that a wash vial be employed in these cases. It should be filled with mobile phase or a solution which will dissolve any remaining material which might still be in the system.

When sticky sample solutions are used, separate Wash Vials can be used to reduce contamination with either older or newer injector designs . Sometimes these sticky samples can adhere to the outside of the needle while it is being withdrawn from a vial which has a septa which has been punctured many times. High puncture rates tend to open up the hole resulting in a lack of "wiping' of the needle surface upon withdrawal. *For vials that are punctured many times, it is critical to replace the septa OR use septa materials which seal for a long enough time frame to reduce this effect. Septa needle wiping eliminates some of this contamination. Two types of contamination can occur from this problem. (a) When the needle is dipped into a vial (same or different one) which also has a large septa opening, it can carry some of the sample with it and deposit it into the new vial (or onto the septa of the vial). (b) The contamination can also run down the needle itself and drip onto the needle seat at the time of injection resulting in contamination of the seat or sample.

One of the easiest solutions to reduce external needle contamination involves incorporating a wash vial which contains a solution which is optimized to quickly dissolve the sample into solution. This sounds simple, but many chromatographer's choose wash solutions which do not enhance the cleaning aspect of the needle at all. For example: Mobile phase, which is normally ideal, but does not work in some cases. Samples such as peptides, proteins, fats, oils and/or lipids can be troublesome as their solubility can be at odds with the mobile phase chosen. For the wash vial to be effective, it must quickly dissolve the material. The needle can be first "dunked" (dipped) into one vial containing the solution and withdrawn, followed by an aspiration and wash in a second wash vial. If needed, you take this cleaning one step further and use additional aspiration steps to serially dilute any remaining material. These wash vials must be changed frequently (easily done by having several wash vial positions programmed in the system). Additionally, the caps should be left OFF the wash vials to reduce pickup contamination each time they are used (this step is critical).


Lastly, if you are analyzing sticky materials which are known to interact with metals found in chromatography systems, consider using a system which incorporates bio-compatible materials such as titanium, tantalum and/or polymers such as PEAK. You can also utilize plastic sample vials (e.g. PP) or plastic vial inserts too.

(4) Inadequate Operator Training: Good chromatography requires a complete understanding of the hardware used and the fundamentals of HPLC. You must be able to troubleshoot the complete flow path of the system and understand the concepts of chromatography as used in method development. This is not a technique best learned by trial and error, but rather through mentoring using logical steps. Depending on your skill set, troubleshooting a "carry-over" problem in an HPLC system can take minutes to months to diagnose and solve. We learn these skills through hands-on experience and training. Reading many of the better books and articles on the subject matter helps too. Get as much practical hands-on training as you can. Ask your supervisor or manager(s) to invest in you by purchasing professional training for you in this field so you can learn on your own systems. You will learn far faster this way and spend less time troubleshooting problems and more time running samples, accurately in less overall time. Training also costs just a fraction of what the instrumentation and your salary are. If you have acquired the fundamental skills, a skilled teacher can impart about one years worth of practical knowledge to you in as little as one week of training.

Summary: The two most common reasons for sample carry-over contamination in an HPLC or LC/MS system are due to: lack of operator training and/or lack of system maintenance (most commonly manifested as a worn injector rotor seal).

 Note: This article specifically addresses carry-over contamination as it relates to the most commonly used HPLC, UHPLC and LC-MS autoinjectors (or autosampler modules).

You may wish to read a related article on "Troubleshooting HPLC Injectors (Manual and Automated)" found at this link: http://hplctips.blogspot.com/2013/06/troubleshooting-hplc-injectors-manual.html