Translator for HPLC HINTS and TIPS for Chromatographers

Showing posts with label DEVELOPMENT. Show all posts
Showing posts with label DEVELOPMENT. Show all posts

Saturday, August 3, 2013

Proper Wavelength Selection for HPLC Method Development (or Purity Determination)

Selecting the best HPLC wavelength(s) to monitor during an analysis method for use in quantitation and/or purity determination requires both knowledge and careful attention. Here is the basic procedure to use:

Step 1. Create the Method. To determine which UV/VIS detector wavelength(s) should be chosen for the analysis of your sample, you will first need to create a general HPLC Method which retains and resolves the compound(s) of interest on the column (goal is a K prime of >2.0, less than 10.0). Be sure and utilize a scanning diode array detector in full scan mode (often referred to as a photo-diode array detector, PDA or DAD) to scan all relevant wavelengths of your samples (e.g. 210 to 450nm). Note: Your choice of mobile phase and detector settings will effect the S/N values.

Step 2. Determine the lambda max of the sample's spectra using the Data analysis software. Once you have completed the analysis, review the spectral data to determine which prominent peak wavelengths have the maximum signal to noise (S/N) ratio. These “peaks” can be used as the individual wavelengths for integration and purity determination. By sure and double check that any detector options which use a “reference wavelength" are turned ‘OFF’ when running these methods (more info on “reference wavelengths” can be found on this blog in another post). With the wavelength selected, chose an appropriate bandwidth for use (narrow).

Step 3. Edit the HPLC method to use the discreet wavelengths found in step 2. Whenever you run a real sample, continue to use the full scanning mode of the detector so you will know about any other components which absorb at wavelengths far away from and/or near the peak wavelengths. These compounds can add or subtract signal from the main peak making it appear to be more or less concentrated (or more or less pure) than it actually is. If you only monitored the sample with a single wavelength detector, then you would miss this vital information and make errors in your purity or concentration determinations.

Conclusion. (1) Using a multi-wavelength, scanning HPLC detector such as a DAD is one of the most important tools you can use to create accurate and reliable chromatography methods. Always use a scanning DAD for method development to prevent errors. (2) Learning how to correctly use and set up the detector's settings, parameters, special features and options may prevent false or misleading results. Only after you have developed a reliable and repeatable method with good sample retention and peak shape can you begin to report accurate integration and concentration values (and/or make UV/VIS "purity" determinations).

Friday, April 1, 2011

CHIRAL HPLC / SFC METHOD DEVELOPMENT (Alcohols):

We are experts in chiral HPLC and SFC method development of pharmaceutical samples and have operated a contract separations labs for nearly two decades. We have learned a great deal about developing fast and reliable racemate separation methods, often where other companies have failed. The knowledge we have gained has allowed us to develop over ten thousand new chromatographic methods for our clients. This has made our company the leading expert in the chiral separations field. 

I would like to share a tip with you regarding the use of different alcohols in chiral method development. That tip is to experiment with different alcohols during the method development process (*Please make sure the alcohol is compatible with your column!). Many of the normal and reversed phase chiral columns can be used with some unconventional alcohols to achieve excellent separations. These alcohols are often used isocratically at 100% concentration for HPLC methods and at levels ~ 10 to 20% for many SFC methods. We have had a great deal of success using 100% pure Methanol for HPLC methods on normal phase style chiral columns (though 100% Ethanol is still one of the best alcohols to initially choose). For SFC methods, Methanol, Ethanol and Butanol (plus mixtures of these) are still some of our favorite co-solvents.Note: SFC needs these alcohols to make the compressed CO2 more polar. Since most chiral drug compounds are resolved using Normal Phase chromatography, SFC is still limited in what it can resolve chromatographically vs HPLC. SFC will never replace conventional HPLC as SFC is far more limited in application (restricted in its range of polarity), but SFC is a worthwhile and important technique to supplement HPLC separations. 

  • Here is a list of some popular alcohols (HPLC grade) worth using in your chiral method development: 

Methanol; Ethanol;1-Butanol; 2-Propanol; 2-Butanol and Acetonitrile (I know this last one is not an alcohol, but it is often overlooked in chiral method development. It works where other solvent systems fail for both HPLC (100%) and less so for SFC (10% as a co-solvent with Methanol). 

Many of the above liquids can be used at 100% concentration, but others require mixing with Hexane or Heptane to yield lower concentrations of alcohol. *Remember to always consult with the column manufacturer first to determine which solvents are safe to use.

  • A note about acids. Weaker is often better in chiral method development. Examples: TFA at 0.01% and Acetic or Formic Acids at 0.1% concentration are often strong enough to ionize most compounds.