Translator for HPLC HINTS and TIPS for Chromatographers

Showing posts with label Autoinjector. Show all posts
Showing posts with label Autoinjector. Show all posts

Saturday, October 31, 2015

HPLC System Dead (Dwell) Volume. Is It Static or Can It Change During a Method? Autoinjectors and Gradients.

I recently read a post on a popular LinkedIn chromatography group where a user asked "if it is possible for the total system volume of their HPLC system to change during a method? Would it effect sample retention times? If so, how? If not, why?" Almost all of the group members who responded to the question said that it was impossible for the system volume to change once the HPLC system was installed! Note, we are referring to the HPLC "System" volume, not the column volume in this question. Column volume is fixed, but the total system volume is not fixed. Another reason why you should not believe everything you read on the web! The question tests your practical knowledge of how HPLC systems operate (specifically, how HPLC injectors operate).

The numerous and incorrect responses posted to the initial question made me realize that this would be an excellent job interview question for chromatographers seeking employment. The question certainly tests the users practical knowledge of liquid chromatography hardware and systems. An intermediate or advanced level user with a few years of experience should have the practical knowledge of the HPLC system flow path and how it effects sample retention times and method development to know the answer. A novice user would not be expected to have this same level of practical knowledge and answer incorrectly. Additionally, most chromatography books only address concepts and fundamentals, but to be a good chromatographer you also need a great deal of practical hands-on knowledge about the how the chromatography hardware operates. This information is obtained through receiving proper training and practical hands-on experience running a wide variety of methods with real samples to solve complex problems. This is a very 'hands-on' technique.

To get back to the original question posed, "if it is possible for the system volume of their HPLC system to change during a method?" Knowledge about column void volume, system swept volume (system dwell volume), gradient composition delays and most importantly of all, how the flow path is manipulated in an autoinjector (or a manual injection valve) to inject a sample into the flow path are all needed to formulate an answer. Which parts of an HPLC system contribute to the total system dwell volume? The total volume of liquid contained in the system from the inside of the pump head to the column and detector inlet or flow cell contribute to the total system volume. These parts are pre-plumbed. The mobile phase mixer and/or pulse dampener are two parts (e.g. ~300 ul) which may contribute a significant percentage of the volume up to the column head. However, of more concern in this case and also a significant contributor of total delay volume in an HPLC system is the injection loop (usually ~100 ul). For manual injection and auto-injector valves, this loop is of a fixed volume, but allows for partial filling (though the loops used are not really accurately measured as the metering device is responsible for most of the volume accuracy). For both types of valves, the loop volume should be at least as large as the largest volume needed (e.g. 100 ul size is common). If the loop size is 100 ul and you only inject 1 ul of sample into a std loop of 100 ul, then you are placing your 1 ul sample up against a slug of 99 ul of mobile phase. While this dilutes the sample and allows some diffusion to take place, spreading out the sample (not ideal), when injected into a  typical 4.6 x 250 mm, 5u column (which has a volume of ~ 2.90 mls), it normally has very little negative effect on the chromatography seen. The effect can be dramatically different when using a tiny column with a small volume (e.g. 2.1 x 50 mm, 3u). The diffusion effect can result in very wide peak widths resulting in poor loading and resolution. A physically smaller volume loop is needed to improve the performance.

However, when we run a gradient analysis another effect is introduced, gradient delay. The mobile phase composition is mixed at the pump head outlets or in a mixer after the pump(s). It takes a specific amount of time for this mixture to reach the head of the column. This time delay is known as the gradient delay. The flow rate and the volume of liquid contained in the tubing from where the liquid is mixed to the head of column determines how long this delay lasts. Since the flow rate normally remains fixed during a method, the total volume of liquid between these two points is the critical value we are interested in. The larger the volume, the longer the delay before the mobile phase composition reaches the column head.
  • Gradient Delay Example: Flow rate = 1.00 ml/min; Volume between pump and head of column is 0.300 mls. Delay volume is 300 ul and the Gradient Delay Time would be 0.3 minutes. So the mobile phase composition that we programmed into the pump does not actually reach the column until 0.3 minutes after we programmed it to occur.  

Depending on the value of this volume, the delay from the time the gradient program starts until the gradient reaches the head of the column will vary. This is a critical concept to understand when developing gradient methods and especially when transferring gradient methods to other HPLC systems (as different systems have different dwell volumes). This poses a minor inconvenience to method development and we need to take it into account so we program composition changes with enough time in between them to allow the changes we programmed to have time to take place and cause the desired effect.

How do we change the volume of the Autoinjector (or manual injector) without re-plumbing the system? One of the most common methods used to reduce the total flow path volume of an autoinjector is to program the injector to switch the injection loop (which has a large volume) out of the flow path immediately after the injection, instead of leaving it directly in the flow path for the remainder of the method. Remove the loop and you subtract the loop volume from the total dwell volume. This will reduce the total system volume (dwell volume) at the start of the method which will also reduce the total gradient delay observed. The newly mixed solvent composition will arrive at the column head sooner. *Using the previous example of a system with a 300 ul gradient delay volume, toggling the injection valve to switch out the 100 ul loop from the flow path would reduce the total delay volume by one third, from 300 ul to 200 ul. So this illustrates a well known technique to change the total system dead volume (dwell volume) of an HPLC system without manually re-plumbing it. Most autosamplers (autoinjectors) provide this loop "toggle" feature as standard in their software menus for exactly this purpose. It can also be time-programmed into most injector's (if no "feature" or menu option is available) and can also be employed with manual injection valves too by placing them back in the "Load" position after injection.

Summary: Can the HPLC system swept volume be changed during a run? YES it can. 
How? One of the easiest ways is by switching the injection loop out of the flow path during the analysis.

Saturday, November 9, 2013

HPLC Maintenance & Repair Parts To Have on Hand for HPLC Systems

HPLC (UHPLC) systems are complex instruments which require periodic inspection, cleaning and maintenance. These tasks are critical to maintain the performance, reliability and accuracy of the instrument. If you have not done so already, I strongly recommend that you create formal standard operating procedures (SOP's) which address: (1) The frequency of when routine and non-routine maintenance procedures should be performed; (2) The types of maintenance and/or repair procedures used (e.g. piston seal replacement, A/I rotary valve seal replacement); (3) The exact step-by-step procedure to follow in performing these tasks and (4) The Performance Verification or Qualification steps and procedures which are to be performed to verify that any repairs made have been done correctly. *An instrument log book should be employed to document these procedures over time.

Periodic "General Maintenance" of the HPLC is one type of service procedure which should be scheduled at a set frequency (Example: Every 6 months) and will serve to provide a time to clean, inspect and repair/replace any parts which are worn due to normal use. Such routine HPLC maintenance is often referred to as a basic "Preventative Maintenance" service (or "PM Service"). Spare parts common to your HPLC system(s) should be on hand to perform these scheduled maintenance procedures as part of a normal PM service.

Here is a list of common parts that should be on hand for a "typical" HPLC system used in a pharmaceutical laboratory. Please consult the appropriate manufacture's product literature to determine the correct parts needed for your own HPLC system. This list is presented as a general guideline only:

  • Capillary tubing, fittings (nuts and ferrules): Assorted fittings, usually made of 316 Stainless Steel, but could be made of polymeric materials. Always have spare precut and polished chromatography tubing of appropriate I.D. and lengths for use with your HPLC available at all times. Insure that the nuts and ferrules used are appropriate for your brand of HPLC system and the columns used as different manufacturers have different specifications for their fittings and ferrules. Many types are not interchangeable.
  • Detector Lamps: At least one spare bulb of a type designed for your specific detector should be on hand. Note that some detectors use multiple lamps so you may need to have more than one type available for each detector. Some lamp bulb types (e.g. tungsten) can be safely stored and last for several years while other types, such as Deuterium bulbs, loose substantial energy after as little as 6 months. If you have several detectors of the exact same design, then there is often no need to stock multiple replacement bulbs for each one. Instead, stock enough bulbs to service one detector as it is unlikely you would see failure of more than one detector on the same day (an exception to this guideline is if you perform PM services on all of the instruments at the same time, then you may want to have multiple bulbs available).
  • Pump Pistons: One set of spare new pistons should be kept on hand for each pump module. As with lamp bulbs, if you have several identical pumps, then there is often no need to stock multiple sets of pistons for each one. Stock only as many as you expect to use in one year. Clean and inspect the pistons during each PM for any signs of scratches or surface abrasions. Under routine use, pistons should only require general cleaning and last a long time before replacement is required (> 1 year). Mobile phases which contain high concentrations of salt buffers often accelerate this wear requiring more frequent replacement. *Always install new piston seals when replacing pistons.
  • Pump Piston Seals: At least one set of spare new piston seals should be on hand for each pump module. Seals wear out more frequently than pistons. You should go through two or more sets of piston seals before you need to replace the pistons. If the piston seals leak, inspect the pistons for wear (replace with new ones or clean and reuse) and install new piston seals. Mobile phases which contain high concentrations of salt buffers often accelerate this wear.
  • Solvent Pickup Filters: These are the large particle filters which sit inside your solvent or mobile phase bottles. They are often made from stainless steel or sintered glass with porous inlets (~10 to 30 micron) and can clog or become fouled over time (esp. when used with aqueous buffers). In some cases these can be cleaned using sonication (not sintered glass filters, only steel or polymeric!). Note: Sometimes it is most cost effective to replace them with new filters then clean and re-use them.
  • Inline Frits/Filters: You may have an inline filter placed after your PUMP head, but before the column inlet to collect any remaining particulate matter. These filters can extend the lifetime of the entire HPLC system (esp. the A/S, A/I and Column), but will only do so if changed on a regular basis. Some manufacturers incorporate this type of filter into the design of their pump modules. An example of this can be found on the HP/Agilent brand model 1050, 1100 and/or 1200-series pumps. These have an inexpensive 10 micron PTFE frit installed in the outlet valve of the pump. This filter catches all of the normally occurring piston seal debris and larger mobile phase particles and should be changed every month. Other pre-filters are installed in cartridges just before the column inlet. These often overlooked pre-filters filters must be replaced about once each month to do their job properly. Keep plenty of spare filters on hand.
  • Auto-injector Rotary Valve Seals: If you have an auto-injector, then a high pressure valve is probably used to switch the sample into the flow path for analysis. This valve will have one or more parts which require regular inspection, cleaning and periodic replacement. Mobile phases which contain high concentrations of salt buffers often accelerate this wear. The valve rotor seal is the most common part which requires replacement.
  • Auto-Sampler Needle: A needle should last a very long time, but depending on the frequency of use and type of vial septa encountered it can require replacement at regular intervals. A good general guideline would be to keep one spare needle on hand for every 2-4 systems.
  • Auto-Sampler Needle Seat: The needle seat often requires more frequent replacement than the needle due to repeated mechanical wear. A good general guideline would be to keep one spare needle seat on hand for each system.
  • UV/VIS Detector Flow Cell: While not actually a required PM spare part, this one is worthwhile to have. If you employ a UV/VIS flow cell, then I always suggest you keep one dedicated spare flow cell on hand which matches the size and volume of the type you use in your instrument. A spare flow cell can prove to be very valuable as a troubleshooting tool if you believe that you have contaminated or clogged your current flow cell. A quick swap can answer the question and get you back to work quickly saving hours or days of lost time. *Note: This extra flow cell should be kept separate from all instruments for use as a tested spare only and not used for regular analysis.
If you have suggestions for other types of common HPLC spares to add to the list or to have on hand, then please let me know.