Translator for HPLC HINTS and TIPS for Chromatographers

Showing posts with label mixer. Show all posts
Showing posts with label mixer. Show all posts

Saturday, October 11, 2014

Appropriate Mixer Volume for HPLC and UHPLC Applications

For gradient analysis, most analytical scale HPLC (UHPLC) systems incorporate a solvent mixer which is designed to balance the requirements of moderate dwell volume, low noise and good mixing efficiency. Depending on the method run, the ideal mixer's volume may in fact be completely different than the one installed in your chromatography system. A high-pressure mixing Binary pump can often work well with a slightly lower volume mixer than a low-pressure mixing ternary or quaternary pumping system (because the high pressure mixing gives you a head start), but both pump types benefit from additional mixing.
  • Be sure to also consider the volume of any pulse dampener used too as these often have large internal volumes and act as mixers. Some pulse dampeners also incorporate the pressure transducer and/or mixer. These types of combination modules may limit the types of modifications which can be made to optimize the mixing and reduce the dwell volume.
  • Don't forget to address the dwell volume contribution of the autosampler, injector loop, interconnecting tubing (extra column volume) and detector flow cell too when optimizing the flow path of your HPLC system.


Here are some general guidelines to help you determine the appropriate mixer volume for your own HPLC system. Note: Since many types of mixer designs exist (static, dynamic, shear...), these are guidelines only. There are some commercially available, high efficiency, low-volume mixers available which can reduce the need for a large volume mixer. Your specific application should be taken into account to determine which size is best.

HPLC System Mixer Volume Choices - Size Matters ("Mixer Volume")

SMALL: Fast or ultrahigh speed separations using low volume, small particle columns. These types of applications depend on a low dwell volume mixer for gradient analysis. To achieve this, your HPLC system should be plumbed with narrow bore capillary tubing (example: 0.005" ID; 0.12mm ID) and include a gradient mixer with a volume of less than 100 ul for low flow rates (example: ~35 ul is rather common size). 

LARGE: High Sensitivity Analysis: Gradient analysis where sensitivity is key, benefit from larger volume mixers to minimize contributions of any UV absorbing additives (e.g. TFA) and turbulence in the flow. Traditional 300 to 750 ul mixers often work well in these applications, provided that the column volumes are also large. Smaller column volumes will require smaller mixer volumes to reduce the added dwell effect.

MEDIUM: Routine HPLC Analysis: Typical analytical separations using 3 to 5 mm ID columns (x 100 mm or longer) usually benefit from modest sized mixers within a range of 200 to 400 ul volume. For these applications, I often start with a recommendation to use a mixer which has 10% of the columns volume as a starting point. For a typical 4.6 x 250 mm, 5 micron porous support column, which has about 3 mLs of internal volume, a 300 ul volume mixer usually provides enough mixing volume for routine gradient analysis.  


Additional Info:

Back in the 1980's we often related mixer volume to intended flow rate/column dimensions. For example: A mixer size of 25 ul was suggested for 50 ul/min flow rates (commonly used with 1 mm ID columns). A mixer size of 200 ul was suggested for 200 ul/min flow rates (commonly used with 2.1 mm ID columns) and 350 ul mixer volume for 1.000 ml/min flow rates (commonly used with 4.6 mm ID columns). Note: Mixers such as these, with large volumes relative to the column volume contributed to large gradient delay times, but this was, and still is, of less concern for isocratic methods.

As mentioned before, the type of mixer, column volume, flow rate and mobile phase characteristics will help suggest the most applicable volume for your application. When in doubt, select a larger mixer volume for isocratic analysis (less baseline noise, better for gradients) and a smaller one if reducing gradient analysis delay volume is critical.

Saturday, September 6, 2014

Common Causes of Baseline Noise in HPLC, UHPLC.



Achieving a flat baseline which does not exhibit spikes, ghost peaks, drift or wander in an unpredictable manner should be a primary goal when performing HPLC analysis or developing methods. Methods which result in flat baselines and have well defined, sharp peaks allow for accurate sample area integration. Integration algorithms perform poorly in quantifying peaks on sloped, drifting or noisy baselines. Excessive baseline noise contributes to many problems, including poor quantitation, high %RSD errors, peak identification errors, retention time variation and many other critical problems. Properly developed HPLC methods are reproducible methods which apply and utilize good chromatography fundamentals. Note: "Noise" is a relative term, often w/o meaning. You should always describe it scientifically, measure and compare the signal to noise ration (S/N) of the baseline vs the peak plus note any cyclical patterns (useful in troubleshooting).


Note: A lack of proper training in the operation of the HPLC system, improper start-up or poor quality maintenance of the chromatograph (Examples: failure to degas and purge the system lines before use; poor mixing; an air bubble stuck in a check valve, a bad detector lamp or a leak will often result in baseline noise) are the main causes of noise. Your HPLC system must be optimized for your specific application. Be sure and allow time for the mobile phase to reach full equilibration with the system before starting any analysis. Do not start an analysis until the baseline is stable.

In this article, we will discuss how temperature fluctuations, inadequate mixing, inadequate degassing and flow cell contamination can result in excessive baseline noise. We will provide suggestions on how to reduce or eliminate these problems. Troubleshooting should be done on-site, not over the web or telephone.

TEMPERATURE FLUCTUATIONS:
To obtain reproducible results, the temperature of the HPLC column must be kept constant during each analysis. Laboratory room temperatures often vary by several degrees during the course of one day and these changes will often change the retention characteristics of the sample(s). The 'On' and 'Off' cycling of power from an air conditioner or heating unit will often cause the baseline to drift in a cyclical manner, up and down, during the day (this can often be seen as a clear sine wave pattern when you zoom-in to study the baseline trace over time). Temperature also changes the refractive index of the mobile phase. Light based detectors (UV/VIS, RI...) will show this change as drift up or down). In some cases, a temperature change of plus or minus one degree C from run-to-run can cause changes in retention times which effect reliability of the method. 

To reduce temperature fluctuations, you must control the temperature of the column and mobile phase (if applicable) during the analysis. This is most commonly done by: (a) using equilibrated mobile phase at the start of the day or analysis, (b) keeping the interconnecting lines as short as possible (esp. any which exit the column and go to detectors/flow cells), (c) insulating any stainless steel lines with plastic tubing to reduce heat loss and (d) using a thermostatted column compartment to maintain the column at a single set temperature throughout the day. Control of the column temperature will remove 'temperature' as a variable from your analysis. Temperature should be a constant run to run, not a variable. Be sure and document the temperature selected as part of your method.

INADEQUATE MOBILE PHASE MIXING:
The associated noise and ripple of incomplete mixing can reduce the limit of detection (LOD) and increase integration error. Both high pressure (with separate pumps) and low pressure pumping (one pump with a multi-channel proportioning valve) systems depend on efficient mixing to reduce noise. For gradient analysis, failure to completely mix the mobile phase solution before it enters the HPLC column often results in excessive baseline noise, spikes and poor reproducibility. "Mixing" is often initially accomplished by combining the flow paths of more than one solvent channel together, using a multi-channel gradient valve or tubing. Mixing also performed directly in a mixer installed in the flow path of an HPLC pump. This mixer is often a static mixer (a simple 'Tee', a tube filled with baffles, a frit or beads, valve orifice or microfluidic device) of low volume design for chromatography use, but allows adequate mixing of the liquids within a prescribed flow rate range. The best mixers incorporate longitudinal and radial mixing in-line. A mixer with too low a volume or of insufficient design can result in poor mixing of the mobile phase (note: incorrect solvent compressibility settings can also cause mixing and noise problems too). To reduce mixing problems, first insure that the mobile phases used are fully soluble with each other. Next, make sure that any mixer used is appropriate for the flow rates and volumes you will be using. If needed, run a gradient valve test to insure that each valve channel is working properly, not leaking or introducing any cross-flow leakage to another channel. Monitor the baseline for pressure stability (% ripple), drift and artifacts  (e.g. spikes) in real time to spot problems and make adjustments to correct them. 

INADEQUATE MOBILE PHASE DEGASSING:
For the best results, continuously degas your mobile phase. Reducing the amount of gas will also improve signal to noise levels of detection, reduce drift and reduce pump cavitation. If you are using an electronic vacuum degassing module, make sure it is maintained and working 100%. A faulty degasser may cause more damage (contamination) to your system and methods. Maintain and Repair them just as you do for your other instrument modules. Gas bubbles may cause check valves to malfunction (get stuck), baseline noise spikes to appear randomly, flow rates and/or pressures to become irregular, detector outputs to show high levels of noise (from air in the flow cell) and also cause the loss of prime or cavitation in pumps. To achieve the best balance of low noise levels and high reliability, both aqueous and organic mobile phases should be fully degassed before and during use. This can be accomplished through stand-alone inline vacuum degassing modules or through gentle continuous helium gas sparging (*Helium makes an excellent choice of gas as it is not soluble in the mobile phase. Never use Nitrogen or Argon gas, they are soluble in the liquid!). In all cases, degassing must be continuous (not just done one time). Continuous degassing reduces cyclical noise and signal variations. For this reason, I do not recommend using ultrasonic baths to degas mobile phase solutions as these are not used in a continuous mode. The mobile phase solution starts to re-absorb gas as soon as you stop sonicating the solution. This results in continuous baseline drift (up and down).
Removal of gasses is critical to the function of a modern HPLC pumping system. The liquids used are compressed to very high levels which forces out solubilized gas from the solutions. This is best accomplished before the liquid is transferred into the pump. These gas bubbles must be minimized to achieve desirable baselines. *Even if you use a high pressure pumping system, an inline degassing system reduces the amount of noise and baseline drift. Properly maintain and service your degasser to insure compliant operation. IOW: Whichever method you use, always degas your mobile phase solutions.

FLOW CELLS:
One other less common cause of baseline spikes and random noise is due to either a dirty flow cell (i.e. the windows) or an air bubble trapped inside the flow cell. If the flow cell is suspected of having one of these problems, then it should be carefully rinsed or flushed out with an appropriate mixture of suitable solutions to expel the air bubble or remove the contamination. If possible, keep a spare, 'known good' flow cell on hand to swap out for troubleshooting purposes. This can help to quickly determine where the problem is. This flow cell must be the exact same size and type (volume and path length) for this purpose. If the cell's windows are contaminated and flushing does not restore them, then many manufacturer's offer kits which allow you to replace the windows and gaskets used. Warning: When attempting to clean or repair any flow cell, be sure and work within the manufacturer's operational specifications for the specific flow cell. Some flow cells are not designed to withstand even very low back pressure and damage can result if you exceed their maximum pressure or chemical rating.

Many other types of problems not mentioned in this short article can also cause baseline noise. For example, a sticking inlet or outlet valve on the pump, worn piston seals, worn out detector lamp(s) or detector electrode (EC) can induce noise. In all cases, the cause must be investigated in a logical, step-wise manner. Demonstrate what is working and rule out items one-by-one.

Reference: http://hplctips.blogspot.com/2014/01/diagnosing-troubleshooting-hplc.html