Translator for HPLC HINTS and TIPS for Chromatographers

Showing posts with label Bubble. Show all posts
Showing posts with label Bubble. Show all posts

Saturday, August 3, 2019

Air Bubbles Exiting the HPLC Vacuum Degasser. Reasons Why

A common question we are asked to solve relates to why air bubbles might be observed exiting out of an HPLC vacuum degasser module  (where the mobile phase leaves the degasser ports to go to the pump heads and/or gradient valve)? Troubleshooting and answering this question is most easily accomplished if you first have a solid understanding of the HPLC flow path, how to make proper connections and are familiar with performing routine maintenance on the HPLC system. 
  • Key Point: HPLC systems utilize Teflon low-pressure tubing to transfer the mobile phase (solvents) from the mobile phase bottles to the HPLC pump. The Teflon lines are permeable to gas in the atmosphere. Gas is diffusing through the plastic tubing used to transport your solvents. This is one of the reasons why we purge the entire flow path of the HPLC system before use, each day. Overnight, gas has diffused into the system so we start by flushing (purge) the mobile phase from each bottle, through the degasser, through each channel all the way to the pump head, to waste.
To find the reason why air bubbles may be observed exiting the HPLC vacuum degasser module, we examine the flow path.
 
Common Reasons For Air Bubbles Exiting The HPLC Vacuum Degasser Include:

  • Loose Connections: If the low pressure fittings (nuts and ferrules)  which secure the Teflon tubing to the degasser are damaged or loose, air may enter the system resulting in bubbles. Most vacuum degassers use plastic finger-tight style fittings 1/4-28 (or 5/16-24). The threads are soft and can be deformed. When access to these fittings is difficult, sometimes the fittings are left loose and will allow small amounts of air to be drawn in (such as found on many of the generic small benchtop degasser which use the micro-chambers or the HP/Agilent model G1379-series). Inspect the tubing and fittings used for proper seating depth, wear and/or damage. Replace parts as needed and re-install using the correct amount of torque.
  • Flow Rate Too High or Not Enough Degasser Equilibration Time: Degassing efficiency is directly related to the flow rate. Lower flow rates increase the residence time of the mobile phase in the degassing membrane or tubing, improving the gas removal. Higher flow rates provide less time for gas extraction and result in lower degassing efficiency. Check with the manufacturer regarding the optimal flow rate range for your degasser to insure you are working  within an acceptable range. Allow enough time for the degasser to reach its set-point and stabilize before use.
  • Choice of Mobile Phase Liquid: The solubility of air (gas) in the specific solution used also affects the efficiency of the vacuum degasser. Aqueous solutions usually hold less gas than popular organic solvents (though air bubbles can be harder to "push" through in water). The amount of dissolved gas inside the liquid relates directly to the time needed to reduce it to acceptable levels for use in HPLC.
  • Dirty or Obstructed Solvent Pickup Filters (Bottle filters): Bottle filters should be cleaned or replaced at regular intervals, following routine maintenance SOPs. When they become fouled or obstructed, a vacuum may form as the liquid is drawn into the system. This may result in air being sucked into the tubing or through a fitting (remember that the low pressure Teflon tubing used to connect the bottles to the degasser and pump is porous and allows gas to diffuse through it). The pickup filters should not obstruct the normal flow of solvent (typically they are 10-20 u in porosity).
  • Vacuum Degasser Damage: HPLC Vacuum degasser modules, like most other component parts of your HPLC system break down over time and require professional diagnostic testing, cleaning and repair. Under ideal conditions, most inline electronic vacuum degassers require diagnostic testing and cleaning or repair every 4 to 5 years. *Many show signs of contamination or failure before that time. The internal vacuum tubing becomes contaminated and worn over time. The vacuum pump is an electromechanical part which is exposed to all of the mobile phase additives and solvent vapors during use. Other internal component parts such as vacuum valves or restrictors may also become contaminated or worn over time. The vacuum degassing membranes (or tubing) themselves can stretch from use and wear out over time. The vacuum chambers may be exposed to incompatible chemicals or over-pressured resulting in internal leakage. Certain chemicals may also attack and even dissolve the degassing membranes causing more internal damage and contamination of the mobile phase. These devices do not have any "contamination" detection alarms and the vacuum sensors sometimes become damaged over time leading to false vacuum levels being reported. Never rely on the module's built-in error alarm system as proof of compliance (no more than you would the reported flow rate shown on the computer screen. It must be measured to be known). Regular professional HPLC degasser testing and service are required to maintain the modules and meet compliance requirements.
 Any of the above causes may contribute to air being drawn into the degasser system. Troubleshooting should begin with the easiest and obvious areas first. Check the condition of the low pressure tubing used to make the connections to and from the mobile phase bottles and degasser. If it is kinked, twisted or damaged, replace it with new tubing. Check the fittings used (nuts and ferrules) for tightness and to insure they have been installed properly. Replace any damaged fittings with new ones. Check the solvent pickups to insure they are clean and not obstructed. Make sure the flow rate you are using is within the acceptable range for your degasser. Has your degasser module been professionally cleaned and serviced within the last 5 years? Are any degasser errors being generated? Is the degasser making any unusual sounds? If any of the answers to these questions are 'yes', then have the HPLC vacuum degasser professionally diagnosed for problems so that repairs can be made to restore function. 

Additional Information:


Saturday, September 6, 2014

Common Causes of Baseline Noise in HPLC, UHPLC.



Achieving a flat baseline which does not exhibit spikes, ghost peaks, drift or wander in an unpredictable manner should be a primary goal when performing HPLC analysis or developing methods. Methods which result in flat baselines and have well defined, sharp peaks allow for accurate sample area integration. Integration algorithms perform poorly in quantifying peaks on sloped, drifting or noisy baselines. Excessive baseline noise contributes to many problems, including poor quantitation, high %RSD errors, peak identification errors, retention time variation and many other critical problems. Properly developed HPLC methods are reproducible methods which apply and utilize good chromatography fundamentals. Note: "Noise" is a relative term, often w/o meaning. You should always describe it scientifically, measure and compare the signal to noise ration (S/N) of the baseline vs the peak plus note any cyclical patterns (useful in troubleshooting).


Note: A lack of proper training in the operation of the HPLC system, improper start-up or poor quality maintenance of the chromatograph (Examples: failure to degas and purge the system lines before use; poor mixing; an air bubble stuck in a check valve, a bad detector lamp or a leak will often result in baseline noise) are the main causes of noise. Your HPLC system must be optimized for your specific application. Be sure and allow time for the mobile phase to reach full equilibration with the system before starting any analysis. Do not start an analysis until the baseline is stable.

In this article, we will discuss how temperature fluctuations, inadequate mixing, inadequate degassing and flow cell contamination can result in excessive baseline noise. We will provide suggestions on how to reduce or eliminate these problems. Troubleshooting should be done on-site, not over the web or telephone.

TEMPERATURE FLUCTUATIONS:
To obtain reproducible results, the temperature of the HPLC column must be kept constant during each analysis. Laboratory room temperatures often vary by several degrees during the course of one day and these changes will often change the retention characteristics of the sample(s). The 'On' and 'Off' cycling of power from an air conditioner or heating unit will often cause the baseline to drift in a cyclical manner, up and down, during the day (this can often be seen as a clear sine wave pattern when you zoom-in to study the baseline trace over time). Temperature also changes the refractive index of the mobile phase. Light based detectors (UV/VIS, RI...) will show this change as drift up or down). In some cases, a temperature change of plus or minus one degree C from run-to-run can cause changes in retention times which effect reliability of the method. 

To reduce temperature fluctuations, you must control the temperature of the column and mobile phase (if applicable) during the analysis. This is most commonly done by: (a) using equilibrated mobile phase at the start of the day or analysis, (b) keeping the interconnecting lines as short as possible (esp. any which exit the column and go to detectors/flow cells), (c) insulating any stainless steel lines with plastic tubing to reduce heat loss and (d) using a thermostatted column compartment to maintain the column at a single set temperature throughout the day. Control of the column temperature will remove 'temperature' as a variable from your analysis. Temperature should be a constant run to run, not a variable. Be sure and document the temperature selected as part of your method.

INADEQUATE MOBILE PHASE MIXING:
The associated noise and ripple of incomplete mixing can reduce the limit of detection (LOD) and increase integration error. Both high pressure (with separate pumps) and low pressure pumping (one pump with a multi-channel proportioning valve) systems depend on efficient mixing to reduce noise. For gradient analysis, failure to completely mix the mobile phase solution before it enters the HPLC column often results in excessive baseline noise, spikes and poor reproducibility. "Mixing" is often initially accomplished by combining the flow paths of more than one solvent channel together, using a multi-channel gradient valve or tubing. Mixing also performed directly in a mixer installed in the flow path of an HPLC pump. This mixer is often a static mixer (a simple 'Tee', a tube filled with baffles, a frit or beads, valve orifice or microfluidic device) of low volume design for chromatography use, but allows adequate mixing of the liquids within a prescribed flow rate range. The best mixers incorporate longitudinal and radial mixing in-line. A mixer with too low a volume or of insufficient design can result in poor mixing of the mobile phase (note: incorrect solvent compressibility settings can also cause mixing and noise problems too). To reduce mixing problems, first insure that the mobile phases used are fully soluble with each other. Next, make sure that any mixer used is appropriate for the flow rates and volumes you will be using. If needed, run a gradient valve test to insure that each valve channel is working properly, not leaking or introducing any cross-flow leakage to another channel. Monitor the baseline for pressure stability (% ripple), drift and artifacts  (e.g. spikes) in real time to spot problems and make adjustments to correct them. 

INADEQUATE MOBILE PHASE DEGASSING:
For the best results, continuously degas your mobile phase. Reducing the amount of gas will also improve signal to noise levels of detection, reduce drift and reduce pump cavitation. If you are using an electronic vacuum degassing module, make sure it is maintained and working 100%. A faulty degasser may cause more damage (contamination) to your system and methods. Maintain and Repair them just as you do for your other instrument modules. Gas bubbles may cause check valves to malfunction (get stuck), baseline noise spikes to appear randomly, flow rates and/or pressures to become irregular, detector outputs to show high levels of noise (from air in the flow cell) and also cause the loss of prime or cavitation in pumps. To achieve the best balance of low noise levels and high reliability, both aqueous and organic mobile phases should be fully degassed before and during use. This can be accomplished through stand-alone inline vacuum degassing modules or through gentle continuous helium gas sparging (*Helium makes an excellent choice of gas as it is not soluble in the mobile phase. Never use Nitrogen or Argon gas, they are soluble in the liquid!). In all cases, degassing must be continuous (not just done one time). Continuous degassing reduces cyclical noise and signal variations. For this reason, I do not recommend using ultrasonic baths to degas mobile phase solutions as these are not used in a continuous mode. The mobile phase solution starts to re-absorb gas as soon as you stop sonicating the solution. This results in continuous baseline drift (up and down).
Removal of gasses is critical to the function of a modern HPLC pumping system. The liquids used are compressed to very high levels which forces out solubilized gas from the solutions. This is best accomplished before the liquid is transferred into the pump. These gas bubbles must be minimized to achieve desirable baselines. *Even if you use a high pressure pumping system, an inline degassing system reduces the amount of noise and baseline drift. Properly maintain and service your degasser to insure compliant operation. IOW: Whichever method you use, always degas your mobile phase solutions.

FLOW CELLS:
One other less common cause of baseline spikes and random noise is due to either a dirty flow cell (i.e. the windows) or an air bubble trapped inside the flow cell. If the flow cell is suspected of having one of these problems, then it should be carefully rinsed or flushed out with an appropriate mixture of suitable solutions to expel the air bubble or remove the contamination. If possible, keep a spare, 'known good' flow cell on hand to swap out for troubleshooting purposes. This can help to quickly determine where the problem is. This flow cell must be the exact same size and type (volume and path length) for this purpose. If the cell's windows are contaminated and flushing does not restore them, then many manufacturer's offer kits which allow you to replace the windows and gaskets used. Warning: When attempting to clean or repair any flow cell, be sure and work within the manufacturer's operational specifications for the specific flow cell. Some flow cells are not designed to withstand even very low back pressure and damage can result if you exceed their maximum pressure or chemical rating.

Many other types of problems not mentioned in this short article can also cause baseline noise. For example, a sticking inlet or outlet valve on the pump, worn piston seals, worn out detector lamp(s) or detector electrode (EC) can induce noise. In all cases, the cause must be investigated in a logical, step-wise manner. Demonstrate what is working and rule out items one-by-one.

Reference: http://hplctips.blogspot.com/2014/01/diagnosing-troubleshooting-hplc.html