Translator for HPLC HINTS and TIPS for Chromatographers

Showing posts with label Variation. Show all posts
Showing posts with label Variation. Show all posts

Saturday, July 11, 2020

Cannabis, Cannabinoid (Hemp, THC, CBD, CBN, Marijuana) HPLC Analysis and Testing, Areas for Improvement [*Updated 8/2021]

Over the past few years we have observed an exponential growth in the number of state-level, legal businesses (in the USA) who offer Cannabis Analysis (e.g. Potency Analysis or Profiles) and/or related businesses such as Hemp Oil Extraction. Most related products which incorporate Marijuana, CBD, THC, Cannabinoids, Terpenes and/or other related compounds require formal analytical laboratory testing which should follow good laboratory practices. This article is targeted to help many of the people involved in this new analysis business (or anyone using chromatography as the analytical technique of choice for the same goals).

As a professional chromatography consultant, I have seen a large increase in the number of requests for my services to this new market. Most of these new businesses have questions about obtaining professional training, correct analysis procedures, improving reproducibility, documentation, optimizing method development, how to receive professional training in maintenance of the HPLC system(s) and need hands-on help to optimize the procedures used. Many users are not achieving acceptable results and need help finding out why. They want to know where they can take a class to learn HPLC method development and how to perform the required tests. 

These new businesses would benefit greatly from professional guidance EARLY in their setup and establishment, to improve the internal methods and procedures of analysis used. Time spent on the "front-end" of any process is always time spent wisely (in this context, knowledge and practical experience = confidence). A chromatography professional can quickly identify areas which may need improvement and/or suggest changes that can directly improve your company's accuracy, reproducibility, increase efficiency and of course, impact your bottom-line too. Focus is placed on the exact areas that will benefit you (rather than wasting time with non-targeted approaches, sales biased classes and trial-and-error approaches). 

  • Please note that there are NO SCIENTIFICALLY LEGITIMATE ONE DAY, ONE WEEK or ONE MONTH LONG TRAINING CLASSES THAT CAN TEACH YOU HOW TO PERFORM HPLC METHOD DEVELOPMENT or ANALYSIS. NONE AT ALL. Most types of "Certification" offered are completely without scientific merit or value. The training needed takes many years of hands-on experience, in an industrial laboratory (not a school), to acquire just a basic level of proficiency (*Emphasis on 'Basic", not intermediate or expert). Be very cautious of anyone who claims to be able to provide you with all the training you need in a short time period.
Generating accurate and reproducible analytical data, esp. with HPLC, SFC or GC requires a great deal of knowledge, formal training and practical hands-on experience (not something which is taught at most university or school programs). These complex techniques require years of bench time and professional hands-on experience to learn). Shipping or selling products which contain unacceptable levels of impurities or which do not meet basic testing or regulatory qualifications could pose a health and/or liability risk. Hire people who have the needed training from industry before setting up the laboratory.

It has been my professional experience that some of the most common training areas that client's would benefit from are: GLP (Good Laboratory Practices/Procedures and SOPs) and additional instrument operational training to demonstrate proficiency in analytical chromatography. Address these areas early on and continuously update them to reduce errors and improve results. Training should continue on a regular basis to gain experience.
 
While each confidential consultation visit I have with a client may show different key issues which need to be addressed, many labs can start to improve their analytical results by addressing and improving how they address:

  1. Documentation: Laboratory methods and sample analysis must be conducted using clearly written documentation. This should initially include having Standard Operating Procedures (SOPs) in place for all methods, procedures, qualification, verification and tests used. They should include SOPs, Document Control and Policy documents which also address: Training, Calibration, Maintenance, Frequency of the same, Mobile phase preparation, pH measurement, use of the balance and so on... I find that it is best to create an initial SOP Template to insure document uniformity (i.e. include such fields as: Business Name, SOP #, review/approval date(s)/names, Rev #, materials & tools needed, purpose, procedure steps, pass/fail definitions... plus any needed supporting documents).
  2. Sample Preparation Methods: Be sure to document, test, review / standardize specific sample preparation methods, for each sample type. Variations in: temperature, extraction solvent or the solution(s) dissolved in, homogenization or grinding methods, mixing, times used, glass or plastic containers used may result in significant variation of the final reported results.
  3. Correct Poor Reproducibility and/or Baseline Instability Issues: In chromatography analysis, if the method(s) used are not stable and reproducible, every time they are run, then little to no scientific value can be obtained from them. Methods used must follow basic good chromatography fundamentals and meet basic guidelines. Baseline noise or instability may directly impact integration results (which directly impacts reported results). Instrumentation must be operated in clean, climate controlled rooms. Failure to reproduce a result within acceptable limits (these will vary per method type) will invalidate the method used. Make sure that SOP's are followed, mobile phase solutions are made fresh each day (do not pre-mix solutions with acids and let them sit for several days before use; do not "top off" bottles), solutions should be degassed, HPLC columns are properly washed and re-equilibrated before each analysis, instruments are maintained (per a SOP) and serviced on a regular basis. 
  4. Develop HPLC methods that follow good chromatography fundamentals: Retain, separate and resolve ALL peaks. Insure peak K primes are 2.0 or higher. If you have co-eluted peaks in your method, then method development is not finished. If you have ghost peaks or changing retention times, then you need to stop running samples and find out why. Be careful whose method(s) you use. A method that is "Validated" may not be scientifically valid method to use. Have the method checked by an experienced chromatographer.
  5. Continuous Training is Required to become Proficient: To be proficient, at a basic level in chromatography, takes most chromatographers several years working in an industrial environment to gain practical hands-on time. That assumes that they have had professional training outside of college, in an industrial lab, and can demonstrate an understanding of the fundamentals of good chromatography. Note, that method development skills require a much higher level of understanding and hands-on training to acquire the needed skill set. Make sure your scientists have the needed level of training to operate, run analysis methods and troubleshoot any issues that come up (and issues will come-up, even under ideal conditions). Please do not make the mistake of thinking they will "figure it out" on their own. Hire people who already have several years of industrial chromatography experience, then provide them with additional training opportunities to advance their skills in the application areas that your business needs.  Get them help NOW, you will save money and time, plus get back on track moving forward with your project.
If you want to surpass your competitors and provide clients with the most accurate data, then investing in your employees professional knowledge and hands-on technical training is the fastest route to do so. This is an experience based technique where decades of practical knowledge are needed to improve your skill set. A professional can quickly provide you with practical information and show you techniques that will help you move forward. 1-2 days of on-site training often translates to nearly one years worth of knowledge. What is one-years worth of lost time worth to you?
  
Additional Resources:

Saturday, September 14, 2019

A Case of Changing Solution pH. Formic Acid Stability in Solution (Methanol)

Real life examples help to better illustrate problems that I am called in to troubleshoot for clients. As a professional scientific consultant, many of my clients have spent months (sometimes years) trying to solve an analytical problem on their own before I am brought in to make the diagnosis and propose a solution. Many years of working in a wide range of scientific fields allows me to identify problems quickly and efficiently saving clients the most money and allowing them to resume work on their projects.

This was the case during a recent consult for a major cannabis testing laboratory. They were having a great deal of difficulty obtaining reproducible results for their analytical testing screens (14 compounds in their analysis with a need for repeatable and accurate results). Variations from 25% to 50% were observed run-to-run over the course of seven days. They assured me they were doing everything in the same way. To begin the troubleshooting process, we started by looking at the actual data gathered and the actual method(s) used to acquire the data. These were evaluated to see if they followed good practices and techniques, also to make sure they had SOP's in place which were clear. Good SOP's must include enough detail to allow anyone reviewing them to prepare samples, standards and/or solutions in the exact same way. Additionally, the HPLC instrumentation was checked and tested to verify it was performing as designed.

After reviewing their training and methodologies on-site, a number of areas of concern were quickly identified. One of the most likely reasons for the variation in values over time was found to be caused by a common mistake in the preparation of mobile phase solutions for the HPLC system. To save time, the client's scientists prepared all organic solvent solutions in advance (~ one month or more), then filtered and stored them at room temperature. For example, their solutions of 0.1% formic acid in HPLC grade Methanol were pre-mixed and stored in glass one liter bottles. These bottles were then put aside, for an average of one month before use. This finding proved key as someone with proper HPLC training would be aware of a well known problem when formic acid is left in pure organic solvent, especially methanol, over time (less so with ACN). Briefly, the formic acid content degrades quickly over time and is often found to be only half of what it was initially after just three or four days (If you have not done so already, this is a simple and useful experiment to run in your lab, monitoring the acid level by titration, not with a pH meter, over time at room temperature in methanol)! This degradation continues over time reducing the amount of acid in solution. If the acid is added to the solution to enhance ionization (i.e. LC-MS; LC-MS/MS) or provide acidification to maintain the sample in a fully ionized form, then as the level of acidification decreases, so does the solution's ability to maintain it. In other words, your HPLC method may change over time (resulting in an in-valid method).
  •  I have always promoted the importance of making and using freshly prepared mobile phase solutions (daily), especially where any aqueous solutions are used (to prevent degradation of additives and/or bacterial or fungi growth). However, this precaution does not normally apply to many pure organic solvents, but there are a few very important exceptions to this, formic acid and methanol in this example. 

Changes were made to their SOP's to insure that future solutions of formic acid in methanol were not prepared in advance, but instead, fresh on the day needed only. This coupled with a few basic improvements to their column washing, equilibration and overall training resulted in %RSD of only 0.3% for future analysis runs.

 
As a side note, I have been asked why solutions of formic acid in methanol are sold commercially for HPLC use? I have no answer to this, but respectfully remind everyone that just because something is offered for sale, does not mean it should be purchased. Ask yourself if the item is appropriate for your application? It may not be suitable for your use or application. 

BTW: Please be sure to flush your HPLC system of all organic acids (e.g. acetic, formic) after use and do not leave them in the HPLC system overnight. Even 1% levels of organic acids may be corrosive to stainless steel. 

Saturday, November 28, 2015

HPLC Retention Time Drift, Change, Area Variability or Poor Reproducibility. Common Reasons for it.

Retention times and area measurements must be reproducible from run to run. When problems are observed, late, early or variable retention times (and/or peak area values) may be observed. Variation outside of acceptable limits indicates a problem with the sample preparation, method design, function of the HPLC system or a lack of training. Here are several commonly observed reasons why sample (or standard) peak retention times or peak area values may not be reproducible:

(1) TEMPERATURE FLUCTUATIONS:
To obtain reproducible results, the temperature of the HPLC column must be kept constant or controlled during each analysis. Laboratory room temperatures can vary up and down by several degrees during the course of one day and these changes will often change the retention characteristics of the sample(s). The 'On' and 'Off' cycling of power from an air conditioner or heating unit will often cause the baseline to drift in a cyclical manner, up and down, during the day (this can often be seen as a clear sine wave pattern when you zoom-in to study the baseline trace over time). Temperature also changes the refractive index of the mobile phase. Optical (Light) based detectors (i.e. UV/VIS, RI...) will show this change as drift up or down). In some cases, a temperature change of plus or minus one degree C from run-to-run can cause changes in retention times which effect reliability of the method. 

To reduce temperature fluctuations, you must control the temperature of the column and mobile phase (if applicable) during the analysis. This is most commonly done by: (a) using fully equilibrated mobile phase at the start of the day or analysis, (b) keeping the interconnecting lines as short as possible (esp. any which exit the column and go to detectors/flow cells), (c) insulating any stainless steel lines with plastic tubing sleeves to reduce heat loss and (d) using a thermostatted column compartment to maintain the column at a single set temperature throughout the day. Control of the column temperature will remove 'temperature' as a variable from your analysis. Method analysis temperature should be constant from run to run, not a variable. Be sure and document the temperature selected as part of your method. 

(2) INADEQUATE MOBILE PHASE MIXING:
Both high pressure (with separate pumps) and low pressure pumping (one pump with a proportioning valve module) systems depend on efficient mixing to accurately meter the requested mobile phase composition. For gradient analysis, failure to completely mix the mobile phase solution before it enters the HPLC column often results in excessive baseline noise, spikes and poor Retention time reproducibility. If your mobile phase composition changes, then the chromatography will change too (e.g. evaporation of the more volatile organic phase from an open bottle may result in a change in composition). "Mixing" is often accomplished directly in a mixer installed in the flow path of an HPLC pump (For more info, please read this article on selecting a mixer). The associated noise and ripple of incomplete mixing can reduce the limit of detection (LOD) and increase integration error. This mixer is often a static mixer (a simple 'Tee', a tube filled with baffles, a frit or beads, valve orifice or microfluidic device) of low volume design for chromatography use, but allows adequate mixing of the liquids within a prescribed flow rate range. The best mixers incorporate longitudinal and radial mixing in-line. A mixer with too low a volume or of insufficient design can result in poor mixing of the mobile phase (note: incorrect solvent compressibility settings can also cause mixing, flow instability and noise problems too). To reduce mixing problems, first insure that the mobile phases used are fully soluble with each other. Next, make sure that any mixer used is appropriate for the flow rates and volumes you will be using. Monitor the baseline for drift, ripple and artifacts in real time to spot problems and make adjustments to correct them. 

(3) INADEQUATE MOBILE PHASE DEGASSING:
For the best results, continuously degass your mobile phase. Reducing the amount of gas in solution will also improve signal to noise levels of detection, reduce Retention time drift and reduce pump cavitation. If you are using an electronic vacuum degassing module, make sure it is maintained and working 100%. A faulty degasser may cause more damage to your system and methods. Maintain and Repair them just as you do for your other instrument modules. Gas bubbles may cause the inlet or outlet check valves to malfunction (get stuck), baseline noise spikes to appear randomly, flow rates and/or back pressure values to become irregular, detector outputs to show high levels of noise (from air in the flow cell) and also cause the loss of prime or cavitation in pumps. To achieve the best balance of low noise levels and high reliability, both aqueous and organic mobile phases should be fully degassed. This can be accomplished through stand alone vacuum degassing modules or through gentle helium gas sparging. In all cases, degassing must be continuous (not just done one time). Continuous degassing reduces cyclical noise and signal variations. For this reason, I do not recommend using ultrasonic baths to degass mobile phase solutions as these are not used continuously. The mobile phase solution starts to re-absorb gas as soon as you stop sonicating the solution. This results in continuous baseline drift.
Removal of gasses is critical to the function of a modern HPLC pumping system. The liquids used are compressed to very high levels which forces out solubilized gas from the solutions. This is best accomplished before the liquid is transferred into the pump. These gas bubbles must be minimized to achieve desirable baselines. *Even if you use a high pressure pumping system, an inline degassing system reduces the amount of noise and baseline drift. Properly maintain and service your degasser to insure compliant operation. IOW: Always degas your mobile phase solutions.
 
(4) SYSTEM LEAKS or FLOW RATE INSTABILITY:
If the peak retention times have increased over time, one possible reason for this change could be a leak. If your flow rate is reduced by a leak, then the retention times will be longer. Always be alert to this pattern of change and check for any signs of leaks on a regular basis. If you find a leak, do not use the HPLC system until it has been repaired. If there is no leak, then the flow rate may not be what you think it is. 

When the actual flow rate is in question, start by checking it manually (never trust the instrument's display screen or the software value for flow rate. Measure it). An easy way to measure the flow rate involves timing the amount of liquid that exits the HPLC detector line after a defined period of time. For example: If your flow rate is set at 1.000 ml/minute, measure the time it takes to fill a 10ml graduated cylinder. It must take exactly 10.00 minutes.

Inadequate degassing, sticking check valves and/or incorrect solvent compressibility values may also cause flow instability.

(5) COLUMN FOULING: 
One of the most common reasons for changes in retention times or area values of well established peak(s) are due to column contamination and fouling of the support material (or of the inlet frit, guard column). The most common reason for this to happen is due to a lack of column flushing or washing after each analysis (esp when running only isocratic methods). Samples that have been poorly prepared, not filtered or were sourced from a complex matrix (i.e. clinical samples) often contain many compounds which are in-addition to the compound of interest. These materials can be retained on the column and not eluted off during each analysis. They build up over time and cause all kinds of strange problems, including changing retention times, new peaks seen and poor overall or wide peak shapes. 

Gradient analysis provides an opportunity to make sure you use a strong enough mobile phase to elute everything off the column during the run. Make sure you ramp up to a high enough concentration of solvent and use a "hold time" to insure this.
Isocratic analysis is a worst case situation for this to occur as the mobile phase is not ramped up to a strong solvent at the end of the method to push off any late eluters, Instead, they accumulate on the column. 

If you use isocratic methods to analyze samples, then you must follow each analysis run with a second, and separate from your analysis method, "column only wash step". This method does not inject any sample. Instead, it uses a strong wash solution which is compatible with your column AND is well known to dissolve any accumulated material into solution and elute it all off the column. For NP applications an alcohol (e.g. MeOH) may be suitable for this job and for RP applications ACN or even MeCl may be be appropriate. Check with the column manufacturer to find out which wash solutions should be used (do not guess, base it on actual sample solubility). 

(6) SAMPLE OVERLOADING (or too large an Injection volume/concentration for the column): If you inject (load) more sample than the column can hold (as determined by a proper loading study), then the peak that results will often be broader in width with more tailing (from diffusion). This will result in a peak which elutes later than expected, fouls the column and results in poor reproducibility.  Be sure to inject the sample dissolved in the mobile phase (or a solution that is weaker than the mobile phase).

(7) SAMPLE INJECTION VOLUME VARIATION: The injection volume used must be appropriate for the type of injector used. All injectors have a stated range in which they are most accurate. Make sure you are injecting within this ideal range and not at the extreme ends of the range (larger error). Manual injectors with fixed loops should be overfilled (3x) for best results. Autosampler vials must be correctly chosen to be compatible with the injector used, contain an excess of liquid and have a loose cap to prevent evaporation or a vacuum from forming inside the vial. *Test injector accuracy and reproducibility separately, at the volume used for your analysis, as part of your method development review. *Review my article on HPLC injectors for more information.

(8) Changes in the pH OF the MOBILE PHASE: Samples containing ionizable compounds are strongly effected by the pH of your mobile phase. Solutions should be prepared fresh, each day (*acids in solvent may change over time). Buffer capacity is often overlooked (the ability to resist pH change). It is highest at the pKa of the acid/base. Try to work within ±1 pH unit of the buffers pKa value for the best pH control of the mobile phase. If your mobile phase is buffered too far away from its pKa, then poor peak shape or variable retention times are often the result. Note: Weakly ionizable samples can be very sensitive to changes of as little as 0.1 pH unit.