Translator for HPLC HINTS and TIPS for Chromatographers

Monday, October 17, 2011

HPLC PUMP SOLVENT COMPRESSIBILITY VALUES

Have you ever noticed excessive pump ripple (baseline noise) that is not caused by a defective check valve ? The ripple might be due to an incorrect HPLC Pump solvent compressibility setting.

We normally think of liquids as not being compressible in general. Hydraulic systems take advantage of this physical fact and many innovations have been developed using this concept. However, in high pressure liquid chromatography (HPLC) we routinely subject different liquids to very high pressures which can result in measurable liquid compression. The degree of actual compression varies for each liquid (see table). Though the amount of compression is very small, it is enough to change the flow rate of the system. When multiple solvents are mixed together at different proportions, such as is common when running a gradient, the measured flow rate can vary from the set flow rate during the entire run. This flow rate accuracy issue can be compensated for using the built-in solvent compressibility compensation software which is found in most modern HPLC systems. Many of these systems will allow you to manually enter the actual liquid compressibility values for each solvent (pump channel) used. This can result in better baseline stability and less pump noise. I would like to point out that the small improvement gained in performance is best implemented AFTER other major changes have been addressed first (i.e. such as fully degassing your solvents; filtering samples before injecting; selecting the best signal bandwidth and sampling rate values for your detector and insuring that your pumping system has received regular maintenance). 
 
Note how Water has a compressibility value of ~ 46, but a very common solvent such as Methanol has a value of 120. These two are very different. *Most pumps are pre-set with a compressibility value of '100'. A 50/50 mixture of the two run isocratically might benefit from a manually edited compressibility value of 83 [(46 + 120) = 166 / 2 = 83)]. *This is a best guess value as the best compressibility value for a mixture of liquids must be determined through actual experiments. Choose the value which results in the lowest pump pressure ripple and/or noise. 


SOLVENT COMPRESSIBILITY VALUES TABLE:

Solvent
Compressibility (10-6 per bar)
Water
46
Acetone
126
Acetonitrile
96
Benzene
95
Carbon Tetrachloride
106
Chloroform
100
Cyclohexane
113
Dichloromethane
99
Ethanol
112
Ethyl Acetate
113
Heptane
144
Hexane
158
Isopropanol
100
Methanol
120
Tetrahydrofuran
97
Toluene
90

Notes: 
(1) The values shown above are approximate and assumed to be accurate. They were recorded at a temperature of 20C (Reference: Handbook of Chemistry and Physics #90). Various grades/purity of solvent may have different compressibility values so please verify the values of your own solvents before use. These should serve as a general guideline only.

(2) The variation in pressure which occurs between the pump piston compression and decompression strokes are sometimes reported by the pump's electronics to aid in troubleshooting. Agilent/HP brand systems refer to it as the pressure "ripple" (should be less than 0.5 %) and Waters brand systems report the calculated ratio, "Compression / Decompression Ratio" value using this guideline [1.0 - 1.4 = Normal; 1.4 -1.8 = Fair; > 1.8 = Possible Bubble]. In all cases, continously degass all liquids and input the correct compressibility values for each mobile phase solution to achieve the most stable flow.

Friday, September 30, 2011

UV / VIS, VWD, DAD, PDA HPLC DETECTOR SIGNAL BANDWIDTH (bw) SELECTION

Modern chromatography UV/VIS detectors offer the operator a choice of one to several hundred different signal wavelength choices (as is the case for Diode Array Detectors). Besides being able to specify a single wavelength, you can often choose a signal BANDWIDTH (bw) to associate with each wavelength [e.g. for a 280 nm signal with 10 nm bandwidth. This is often written as: 280 (10) or [280:10]. In many detectors, Signal Bandwidth is a variable, not fixed and represents the total number of nanometers across the specified signal value chosen. For example: If you select a signal wavelength of 280 nm and choose a bandwidth value of 10 nm, then you are actually gathering all signal data between 275 nm and 285 nm (5 nm to the left of the apex and 5 nm to the right for a total of 10 nm). Using a narrow bandwidth has the advantage of increasing the signal selectivity of the detector as you are only collecting data within a tight window. If you were to increase the bandwidth to 60 nm in the same example you would now be collecting data between 250 nm and 310 nm. The additional data collected over this wider range may reduce the total noise (by averaging it over a wide range), improve the S/N ratio (which may increase sensitivity), but it also reduces the selectivity. Large bandwidths also increase the chance you may include peak signal data from other co-eluting components into your signal data. You must select a bandwidth range for each signal wavelength which is located 'safely' away from any other potentially interfering peak. As with many things in life, balance is important. In this case, bandwidth choice is the balance between selectivity and sensitivity.


  • When developing new methods we recommend that you choose an initial bandwidth value of 10 nm for each signal. This provides a nice balance between selectivity and sensitivity. It is also a common bandwidth value used on many older UV/VIS detectors which have a fixed signal bandwidth (such as many single or variable wavelength detectors).


  • If you have determined the exact signal maximum for your sample and you would like to gain additional sensitivity for your sample (and thus decrease selectivity), re-run the analysis using several different, but increasing signal bandwidth values (e.g. 10, 20, 30, 50 and 100 nm). Choose bw values that are safely within the range of the detector, within the limits of the mobile phase's absorption region and also away from any potential co-eluting peaks. *To confirm which value is best, be sure and calculate the actual measured signal to noise ratio of the peak of interest after each analysis. This is a critical step! Do not be fooled by increases in the peak height or area alone as these changes are not always synonymous with better signal to noise ratios. Only by measuring the actual baseline noise level for each run and comparing it with the actual peak signal obtained will you be able to determine if increasing the bandwidth has provided you with better noise reduction and signal strength.


  • To increase spectral signal selectivity choose a bw value that is very narrow. A value such as 2 or 4 nm would allow the detector to collect only signal data that is at or near the apex of your selected wavelength. This can be very useful when trying to discriminate your signal from nearby signal peaks, especially at low wavelengths such as 210 nm.


  • When reporting your method conditions always include the wavelength AND bandwidth used for each signal. In order to accurately reproduce your method, this information is needed. *The flow cell dimensions, wavelength and bandwidth should always be included in your method.

Wednesday, September 14, 2011

How Do C18 HPLC Phases Differ ?

Reversed phase HPLC columns which utilize the octadecyl functional group often differ in many ways. Besides the particle size and shape of the stationary phase (irregular or spherical), other parameters must be considered including: Porosity (fully porous or superficially porous) the coating chemistry and degree of end-capping used. Two other very important ways that columns can differ from one another are in their available surface area and the extent to which those surfaces are covered with the phase coating (i.e. covalently bonded or non-covalently coated onto the support, plus the total carbon %). When comparing columns for use in validated methods, be sure and consider these factors to minimize the number of changes to your method. Always test several columns of the same exact type to determine the batch-to-batch reproducibility and variation. Some manufacturers have mastered the art of preparing and packing columns which achieve high batch-to-batch reproducibility. After all, what good is a specific column in your method if the results are not reproducible ?