Translator for HPLC HINTS and TIPS for Chromatographers

Showing posts with label ESI. Show all posts
Showing posts with label ESI. Show all posts

Saturday, November 3, 2018

HPLC Mobile Phase Composition and LC-MS Electrospray Voltage

I am often asked about the importance of selecting and optimizing the LC-MS Electrospray Ionization Interface (ESI) voltage. To better understand why it is necessary to do so and how it effects the results obtained, let us review some key facts about ESI first.

  • While a gas sheathed flow of volatile mobile phase is directed into the MS source, a strong positive or negative electric field (KV) is applied across the MS inlet. The effluent is atomized and evaporated to form ions (voltage polarity determines positive/negative mode).
  • Too high of a capillary voltage may produce electrical arcing resulting in damage to the system (e.g. PEEK needle may melt, burn and/or clog).
  • Too low of a capillary voltage and ion evaporation will not occur.
  • The voltage needed to produce efficient desolvation and ion evaporation are directly related to the sheath gas flow rate, the mobile phase composition and the flow rate.

What Can You Do To Insure Finding A Suitable ESI Capillary Voltage?


  1. High quality HPLC methods which utilize fully volatile mobile phases and first retain, hold, then elute all samples are needed to generate LC-MS or LC/MS-MS methods. Optimize the HPLC column type, dimensions, MS compatible mobile phase composition and flow rate before optimizing the MS settings. If you have enough sample available, use an infusion method (continuous flow injection) to establish the initial MS settings needed to detect the sample before continuing with the LC/MS method development optimization. Infusion (with a syringe pump) provides the needed time to makes changes, observe how they change the signal for fastest optimization.
  2. The HPLC mobile phase and any dissolved additives or buffers used for LC/MS analysis must be of high purity and fully volatile.
  3. Make sure your sample is fully dissolved in the mobile phase and filtered (0.22 u filter) before injecting into the system.
  4. Basic samples can be protonated to form [M+H]+ clusters in acidic mobile phases.
  5. Acidic samples can be deprotonated to form [M-H]- clusters in basic mobile phases.
  6. The electrospray ionization (ESI) process used in LC/MS or LC/MS-MS analysis is affected by the surface tension of the HPLC mobile phase used. Water has a higher surface tension than most organic solvents (i.e. Methanol, Acetonitrile, Ethanol, IPA). Using conventional flow rates with highly aqueous mobile phases requires a higher initial voltage for ion evaporation to occur. IOW: Mobile phase mixtures high in water content will require a higher capillary voltage.
  7. Higher organic solvent content usually leads to better atomization / droplet formation and require less capillary voltage to maintain.
  8. Lower HPLC flow rates usually lead to better atomization / droplet formation and require less capillary voltage to maintain.
  9. To optimize the ESI capillary voltage it is necessary to carry out experiments trying different voltages and monitoring the signal (S/N of a standard or sample) to find the best voltage which results in good signal quality and low noise. This process requires experience to know which settings are likely to enhance the signal and a great deal of skill operating the Mass Spectrometer.

Optionally, ESI signal output may be enhanced using: Adducts or changing the solution chemistry with other mobile phase additives.

Monday, May 21, 2012

Common LC/MS ESI Tune Compounds:



ION MODE

COMPOUND NAME

Mw

Positive
Acetaminophen
151
Positive
Caffeine
194
Positive
Diphenylhydramine
255
Positive
Desipramine
266
Positive
Aspartame
294
Positive
Cortisone
360
Positive
Reserpine
608
Negative
Aldicarb
190
Negative
Benzo(a)pyrene
252
Positive
di-Octylphthalate
391

Tuesday, February 21, 2012

Techniques To Enhance Negative Mode ESI in LC/MS

Many sample types require MS analysis using negative ion electrospray mass spectrometry (ES MS) mode. Sensitivity can be less in this mode, compared to positive mode, as they employ mostly non-polar solvents which do not promote ion formation. In the past we discussed how adduct formation can be employed to enhance ion formation. There are other techniques which can be used as well. Here are a few tips which can be used to improve the quality of the signal obtained under negative mode ES MS conditions.

(1) Negative ion formation and signal response can be improved by choosing the right solution chemistry. One method to improve solvent desolvation and reduce the electrical discharge (noise) is to add isopropyl alcohol (2-Propanol) to the mobile phase. Reported in the literature nearly twenty years ago, as little as a 10% solution has been found to increase the signal level and decrease the noise level under many conditions. The addition of methanol to the mobile phase also can improve the signal, though usually not to the same degree as IPA.


(2) Another technique used to improve ionization involves the pH of the solution or mobile phase used. Higher pH values are often better. Post column addition of a basic solution which adds proton acceptors to the mix, such as ammonium hydroxide (20 or 30 mM), can also improve signal response and stability.


(3) APCI mode: If running nonpolar to semi-polar small molecular weight compounds, especially those which are volatile, this is still the source of choice. *Conventional ESI mode is best for polar to neutral molecules in small to large Mw ranges.

Thursday, December 1, 2011

Adduct formation in LC-MS Analysis (esp. ESI)

Almost everything you analyze by Electrospray ionization mass spectrometry will create an adduct with something in the system. Normally, hydrogen is the most common adduct formed (M+1), but other chemicals, often in trace amounts may form adducts with your sample too. Sometimes we can take advantage of this fact and introduce our own adduct into the system (post column) to increase signal sensitivity or help us isolate one signal from another (the addition of an adduct can sometimes increase the signal seen for one species, but not the other). 

One of my favorite elements to form an adduct with is sodium (Na+). Two common forms are; sodium citrate and sodium acetate. Both have PKA’s between 3 and 6 so a variety of buffered solutions can be prepared for use. However, it is very important that we keep the concentration of sodium as low as possible so as to not clog the mass detector or suppress ionization completely (and see nothing BUT Sodium for weeks …). My suggestion is to initially prepare the buffers such that the solution is less than or equal to 3 mM in concentration. The lowest concentration should be used that yields reproducible results. Ranges from 0.1 mM to 5 mM are common. Only use the highest purity, volatile buffers (some manufacturer’s use names such as “ultra” to describe them) when preparing these ‘doping’ solutions for post-column addition and be sure and filter them through a 0.2 micron filter before use. A syringe pump can be used to deliver the solution during the run. A low flow rate should be used to infuse the adduct solution into the main inlet of the detector. Make sure you have a simple way of controlling the pump through the system (e.g. ‘On’ / ‘Off’, contact closure) so the flow can be turned off when you are not acquiring data. Be sure to not only monitor the baseline, but also measure true peak S/N values of a standard when evaluated the results (decreasing baseline noise may also mean the signal is decreasing too).

Ammonium (NH4) is another popular adduct to add to the system, often in the form of ammonium acetate. It reduces the chances of adding more sodium ions to the system (from glassware). Whichever adduct you use in your system, always start off testing as low a concentration as possible. Monitor the baseline carefully for noise and also to see if the addition of the compound is suppressing or enhancing the signal generated for your compound. Careful use of adducts in your system can provide you with another means to selectively enhance the signal of some compounds without changing the original chromatography method.

I must again emphasize to use the lowest concentration of doping agent. Proper pH control and mode choice are also very important. Use of a syringe pump for infusion, post column can help you to quickly optimize the fragmentor settings in real time.

Friday, July 15, 2011

ESI Charge State Calculator Application

Here is a neat program, created by Robert Winkler, which allows you to calculate the Mw of proteins using data from your electrospray ionization (ESI) mass spec source.

Reference this journal article:  Winkler R. "A universal tool for charge state determination and molecular weight calculation of proteins from electrospray ionization mass spectrometry data." Rapid Commun Mass Spectrom, 24(3),  285-294, 2010.