Translator for HPLC HINTS and TIPS for Chromatographers

Showing posts with label MS. Show all posts
Showing posts with label MS. Show all posts

Saturday, November 3, 2018

HPLC Mobile Phase Composition and LC-MS Electrospray Voltage

I am often asked about the importance of selecting and optimizing the LC-MS Electrospray Ionization Interface (ESI) voltage. To better understand why it is necessary to do so and how it effects the results obtained, let us review some key facts about ESI first.

  • While a gas sheathed flow of volatile mobile phase is directed into the MS source, a strong positive or negative electric field (KV) is applied across the MS inlet. The effluent is atomized and evaporated to form ions (voltage polarity determines positive/negative mode).
  • Too high of a capillary voltage may produce electrical arcing resulting in damage to the system (e.g. PEEK needle may melt, burn and/or clog).
  • Too low of a capillary voltage and ion evaporation will not occur.
  • The voltage needed to produce efficient desolvation and ion evaporation are directly related to the sheath gas flow rate, the mobile phase composition and the flow rate.

What Can You Do To Insure Finding A Suitable ESI Capillary Voltage?


  1. High quality HPLC methods which utilize fully volatile mobile phases and first retain, hold, then elute all samples are needed to generate LC-MS or LC/MS-MS methods. Optimize the HPLC column type, dimensions, MS compatible mobile phase composition and flow rate before optimizing the MS settings. If you have enough sample available, use an infusion method (continuous flow injection) to establish the initial MS settings needed to detect the sample before continuing with the LC/MS method development optimization. Infusion (with a syringe pump) provides the needed time to makes changes, observe how they change the signal for fastest optimization.
  2. The HPLC mobile phase and any dissolved additives or buffers used for LC/MS analysis must be of high purity and fully volatile.
  3. Make sure your sample is fully dissolved in the mobile phase and filtered (0.22 u filter) before injecting into the system.
  4. Basic samples can be protonated to form [M+H]+ clusters in acidic mobile phases.
  5. Acidic samples can be deprotonated to form [M-H]- clusters in basic mobile phases.
  6. The electrospray ionization (ESI) process used in LC/MS or LC/MS-MS analysis is affected by the surface tension of the HPLC mobile phase used. Water has a higher surface tension than most organic solvents (i.e. Methanol, Acetonitrile, Ethanol, IPA). Using conventional flow rates with highly aqueous mobile phases requires a higher initial voltage for ion evaporation to occur. IOW: Mobile phase mixtures high in water content will require a higher capillary voltage.
  7. Higher organic solvent content usually leads to better atomization / droplet formation and require less capillary voltage to maintain.
  8. Lower HPLC flow rates usually lead to better atomization / droplet formation and require less capillary voltage to maintain.
  9. To optimize the ESI capillary voltage it is necessary to carry out experiments trying different voltages and monitoring the signal (S/N of a standard or sample) to find the best voltage which results in good signal quality and low noise. This process requires experience to know which settings are likely to enhance the signal and a great deal of skill operating the Mass Spectrometer.

Optionally, ESI signal output may be enhanced using: Adducts or changing the solution chemistry with other mobile phase additives.

Saturday, September 26, 2015

Vacuum Pressure Units Conversion Table

Several of the questions I receive each week by email deal with scientific calculations or conversion of various units. One popular request relates to the conversion of micrograms, ppm and percent. Several years ago to address this question, I posted a table of weight to ppm units ("Conversion Factors microgram, nanogram, ppm, ppb and percent") which has proven to be very popular.

Because of the large number of vacuum pumps attached to HPLC and MS systems, another common conversion question relates to vacuum units. Due to the different applications and regions of the world, the desired unit often varies. It is for this reason that I develop unit conversion tables as I find these tables provide for a convenient way to print out and/or keep handy in a binder for future reference. Widespread computer use coupled to freely available page reader software (e.g. Adobe PDF) provides another means to store useful information as a pdf file too. I present this "Vacuum Pressure Units Conversion Table" in a viewable and an optionally available downloadable form [click HERE to download].




VACUUM PRESSURE UNITS CONVERSION TABLE:
*Some of the more commonly used values are shown in boldface type. ** Absolute Vacuum..


%
Vacuum
Torr
(mm Mercury)
kPa
abs
Inches of
Mercury
Micron
PSI
0.0
760.0
101.4
0.00
760,000
14.7
1.3
750.0
99.9
0.42
750,000
14.5
1.9
735.6
97.7
1.02
735,600
14.2
7.9
700.0
93.5
2.32
700,000
13.5
21.0
600.0
79.9
6.32
600,000
11.6
34.0
500.0
66.7
10.22
500,000
9.7
47.0
400.0
53.2
14.22
400,000
7.7
50.0
380.0
50.8
14.92
380,000
7.3
61.0
300.0
40
18.12
300,000
5.8
74.0
200.0
26.6
22.07
200,000
3.9
87.0
100.0
13.3
25.98
100,000
1.93
88.0
90.0
12
26.38
90,000
1.74
89.5
80.0
10.7
26.77
80,000
1.55
90.8
70.0
9.3
27.16
70,000
1.35
92.1
60.0
8
27.56
60,000
1.16
93.0
51.7
6.9
27.89
51,700
1.00
93.5
50.0
6.7
27.95
50,000
0.97
94.8
40.0
5.3
28.35
40,000
0.77
96.1
30.0
4
28.74
30,000
0.58
96.6
25.4
3.4
28.92
25,400
0.49
97.4
20.0
2.7
29.14
20,000
0.39
98.7
10.0
1.3
29.53
10,000
0.193
99.0
7.6
1.0
29.62
7,600
0.147
99.87
1.0
0.13
29.88
1,000
0.01934
99.90
0.75
0.1
29.89
750
0.0145
99.99
0.10
0.013
29.916
100
0.00193
99.999
0.01
0.0013
29.9196
10
0.000193
100
0.00
0
29.92
0
0

Saturday, June 14, 2014

Popular LC/MS and HPLC Volatile Mobile Phase Modifiers

For applications which utilize an Evaporative Light Scattering Detector (E.L.S.D.), Charged Aerosol Detector (CAD) and/or Mass Spectrometer Detector with Electrospray Ionization source (e.g. LC/MS, MSD or LC/MS/MS), a fully volatile buffering system is usually required. Many of the common HPLC buffers such as sodium or potassium phosphate are not compatible.Use the smallest amount of buffer which provides buffering under the analysis conditions (e.g. 10mM). *Select a buffering agent (or modifier) which are within 2 pH units (+/- 1) of the sample's pKa and 2 pH units away from any acid's pKa. 

  • For LC/MS applications: Positive ion mode favors acidic mobile phases and Negative ion mode favors basic mobile phases. However, feel free to experiment using both ionization modes and don't forget about using adducts (e.g. ammonium and sodium) with all types of samples to improve signal response. *Maintain these buffers at or below 10 mM. Adjust the pH of the mobile phase to be 1 to 2 units away from your sample's pKa.

Table 1:  Popular examples of useful volatile mobile phase buffers, modifiers and/or additives.

BUFFERING/MODIFIER AGENT                                   USEFUL pH RANGE
  • Ammonium formate                                 2.8 - 4.8; 8.2. - 10.2
  • Formic Acid                                            3.3 - 4.3
  • Pyridine/Formic Acid                               3.3. 4.3, 4.8 - 5.8
  • Trimethylamine/Formic Acid                     3.3 - 4.3, 9.3 - 10.3
  • Ammonium Acetate                                  3.8 - 5.8; 8.2 - 10.2
  • Acetic Acid                                              4.3 - 5.3
  • Trimethylamine/Acetic Acid                      4.3 -5.3, 9.3 - 10.3
  • Ammonia/Formic Acid                              3.3 - 4.3, 8.8 - 9.8
  • Ammonia/Acetic Acid                               4.3 - 5.3, 8.8 - 9.8
  • Ammonium Bicarbonate                           5.9 - 6.9,  8.8 - 9.8
  • Ammonium Carbonate                              5.9 - 6.9, 8.8 - 9.8  
  • Carbonic Acid                                            6 - 8 (pKa 6.37/pKb 7.63)
  • 1-Methylpiperidene                                   10.0 - 12.0  

  • Trifluoroacetic Acid (TFA)                        pKa = 0.3 (WARNING when used with MS
                                                                                     systems!).  See notes #2 and #4 below.           
*Notes: (1) Formic acid (3.75) is slightly stronger and more volatile than Acetic acid (4.75). Formic acid is often available in higher purity grades and absorbs less in the UV region making it a better choice for most chromatography applications. It works well in positive mode LC/MS analysis, esp at 0.1%. (2) Trifluoroacetic acid (TFA, pKa = 0.3) is very strong and volatile, but we do not recommend its use in LC/MS applications as it can increase the background signal levels (esp. in Negative Mode) LC/MS (m/z 113), be very hard to remove from the source and result in long term instrument contamination. Difluoroacetic acid (DFA) and ammonium formate are other alternatives as they offer good ion pairing capacity with less ion suppression problems. (3) Triethylamine (TEA, pKa 11) is volatile, strong and very stable, but causes similar contamination problems resulting in high background signals when used in Positive Mode LC/MS (m/z 102). (4) Many ion-pairing reagents suppress ionization, bind to the plastics and metals used and contaminate the flow path. If you must use them, please do so using the lowest possible concentrations levels and thoroughly decontaminate the entire flow path of the system after use (or dedicate the MS system to use with them only). Minimize further contamination by labeling and using a dedicated column for the application (Do not use that same column exposed to ion pairing compounds for any other methods or applications). (5) Acids and bases alone provide little "buffering" so should be used with a secondary buffering species to resist change in pH.