Translator for HPLC HINTS and TIPS for Chromatographers

Saturday, February 4, 2017

Determine the HPLC System Dwell Volume (Gradient Delay Volume)



Note: The total HPLC system dwell volume is different than the HPLC column’s void volume. Two different terms for two very different measurements.

When we perform gradient HPLC analysis, the mobile phase composition is changed over a period of time. The mobile phase is mixed in real time by the pump(s), mixer and/or valves, then transported to the injector and finally, on to the head of the HPLC column. The total volume of liquid contained between where the mobile phase is mixed and the head of the column helps us determine when the newly mixed solution arrives at the column head (it is not instantaneous). This delay is often referred to as the gradient delay time (or delay volume) and its value will vary for different HPLC systems due mainly to differences in tubing dimensions used, pumping system type and the design of the flow path. 

For example: If the system dwell volume is found to be 1 ml and the flow rate used is 1.000 ml/min, then the delay time is one minute. 

So how do we know what the system dwell volume or gradient delay volume is? Well, we measure it of course!

Measure the ‘System Dwell Volume’ (aka: Gradient Delay Volume)*:
(1) REMOVE any HPLC column(s) and install a Zero Dead Volume Union (ZDV) in its place.
(2) Prepare Two Different Mobile phase solutions:
Bottle ‘A’: HPLC grade Methanol (MeOH).
Bottle ‘B’: HPLC grade Methanol with 0.1% acetone added (v/v).
(3) Set your UV/VIS detector to 265 nm (8 nm Bandwidth, Reference OFF).
(4) Program a suitable system flow rate and create a simple Gradient Method (linear change) which starts at 0.0 minutes with 100% ‘A’ (HPLC grade Methanol) and 0% B (HPLC grade Methanol with 0.1% acetone) and runs to 0% ‘A’ and 100% ‘B’ for about 10.0 minutes.
(5) Flush and degas both solutions, ‘B’ first, then ‘A’ through the system until you get a nice clean, flat baseline.
(6) No injection should occur during this method.
(7) Start the method (RUN) and observe the 265 nm signal over time. At some point you should observe the signal begin to rise. When you see this signal change occur, the acetone has finally made it from the pump head to the detector’s flow cell. Make note of the time this occurs. 

Using the flow rate and time, you can now estimate the total system dwell volume. 

Example: If you observe the signal start to rise steeply at 2.00 minutes and your flow rate is 1.000 ml/min. Your dwell volume would be 2.000 mls. 

A more accurate system dwell volume value can be obtained by next running the same method with an injection of acetone (e.g. 1 ul) and noting the time at which the injection peak is first seen. That will give you the time it takes the sample (and therefore the volume) to go from the injector to the flow cell. If you subtract this time off the system dwell time you recorded in the last test, you will have the actual measured time from the pump head (or proportioning valve) to the head of the column (vs the flow cell). Normally the volume contained in this tubing and flow cell are very small relative to the volume in the rest of the system, so we can ignore them. However, when using some of the very low volume columns (e.g. 2.1 x 50 mm), the volume contained in these areas can become significant so when appropriate, we need to be aware of them.

Failure to take into account changes in HPLC system dwell volumes can result in methods which no longer work or provide different results. This is because the gradient change you program in your method may not allow enough time for the new mobile phase composition to reach and flow all the way through the column in the time that you have programmed. A common mistake we see is when users forget to adjust the gradient profile when changing column dimensions or program changes using too fast a time.

BTW: One common trick we use to improve compatibility between systems which have different dwell volumes is to include an initial (time 0.0)  isocratic hold-time into the start of each method. If all systems used have system delay volumes under 3 mls, then add a 3 minute isocratic hold time at the start of each method (if 1.000 ml/min flow rates are used), before any gradient starts. While not the best way to deal with the issue, this type of “cheat” can make it possible to quickly adapt a method for use on several different system types.

*Note: This is a generic method to determine the system dwell volume or gradient delay volume. There are many other methods which can be used as well. This proposed example serves to illustrate the concept.