Translator for HPLC HINTS and TIPS for Chromatographers

Showing posts with label Testing. Show all posts
Showing posts with label Testing. Show all posts

Saturday, October 31, 2020

Capillary Electrophoresis (CE) Troubleshooting Tips:

What follows is a short list of problems, "observations" followed by a list of areas that should be investigated, as appropriate in parenthesis (), to troubleshoot common problems seen when using the analytical technique of capillary electrophoresis, CE, CZE.

 Observation (Investigate for cause):

            Excessive Baseline Drifting up or down

·         Temperature is not stable (stabilize room and/or capillary temperature).

·         Fouling of capillary (replace or clean and wash capillary with fresh, filtered solution).

·         Current levels unstable (loose connections, partial obstruction in capillary or running out of buffer solutions).

·         Capillary may have poorly cut ends resulting in poor connections or flow (replace capillary).

Excessive Signal Noise

·         Detector has air in flow cell (purge capillary and wash flow path).

·         Current level may be too high (reduce current).

·         Detection parameters, wavelength and bandwidth, may be inappropriate for buffer solution (select appropriate detection settings which are appropriate for the buffer used and selective for the analyte).

Loss of Signal

·         Voltage/Current has turned off (turn ON or investigate if system is in “alarm” state due to an error).

·         Detector parameters not selected.

·         Capillary has not been fully equilibrated (equilibrate capillary and auto-zero the scale).

·         Baseline offset may be off-scale (after equilibration, adjust scale or auto-zero).

·         Detector lamp(s) off, not ignited or due for replacement (verify lamp operation).

Signal Peak Shape Issues

·         Truncated, clipped or ‘square’ peaks (sample overload, reduce concentration 10x, shorten load time and re-evaluate).

·         Tailing peaks often result from very high current or when the concentration of buffer is too high (lower the current and/or reduce the buffer concentration, then re-evaluate).

·         Sampling rate may be too low (measure the peak width in units of time (i.e. seconds), then configure the detector to insure that the sampling rate allows for at least 20 points to be collected per average peak width (30 points is a better target # to use).

·         No peaks observed (Many possible causes, including: Partially or fully obstructed capillary, broken capillary, out of buffer, no injection, detector settings inappropriate for analysis, current too low, pressure too low. Look for a small peak from the injection along the start of the baseline to confirm that an analysis was started, then troubleshoot the method and settings).

            General Stability and Noise Issues 

·   When the CE system has not been used in a few days, salts from the buffer solution(s) may deposit on and clog the capillary line, flow cell and/or sensors. To avoid these problems, be sure to thoroughly clean, flush and wash down the flow path before use. Take the time to prepare fresh filtered solutions (each day) and allow time for the system to equilibrate. Taking these basic steps will avoid many hours/days of frustration.

Saturday, April 21, 2018

The HPLC Restriction Capillary; Troubleshooting, Qualification and Running Without A Column:

Most types of HPLC pumps will not operate properly without 30 or more bars of back-pressure on their outlets to prevent cavitation and excessive pulsation. Columns play a vital role in stabilizing the baseline during an analysis. In this application, they not only aid retention, but act as a cushion or buffer.

When we want to closely replicate the operation of an HPLC system under "normal" conditions and do not want to use an HPLC column in-line (because a column adds variability), we install a "restrictor" such as a restriction capillary in its place. A restriction capillary is often a very narrow ID section of long tubing (capillary) which will restrict the flow of mobile phase through it. For most HPLC systems, a restrictor which is sized to provide about 1,000 to 2,000 psi (~ 70 to 140 Bars) of back-pressure will closely replicate normal operating conditions. The restrictor can be chosen based on length, ID, volume and your flow rate to create this level of back-pressure. You could place a high pressure rated, zero-dead-volume union its place, but in doing so, the system back-pressure may be extremely low ( a few bars) and show poor pump performance. We need to replicate actual analysis conditions during testing or the results obtained may be invalid and unscientific. An HPLC column, with its densely packed small particles inside acts as a pressure pulse buffer and adds a great deal of back-pressure to the HPLC system. That back-pressure greatly improves the stability of the pump operation and overall baseline. HPLC Columns prevents pulsations by acting as a dampener and/or system buffer.

There will be times when you need to operate the HPLC system without an HPLC column installed.

For Example: 
  • Troubleshooting sources of contamination, carryover or artifact peaks on a column;
  • Measuring the HPLC system delay volume (gradient delay);
  • Testing the performance of the injector;
  • Testing the performance of the pump (measure % ripple); 
  • Testing the performance of a detector module (measure S/N);
  • Running HPLC Operational Qualification Tests (OQ);
  • Running HPLC Installation Qualification Tests (IQ);
  • Running Performance Verification Tests on a Module (PV);
  • Running many of the ASTM Tests (e.g. "Baseline Noise & Drift Test").
Example of a commercially available Restriction Capillary (Agilent P/N G1312-67500). You will want to include any needed details of the restriction capillary chosen for your work in the SOP's that you write which utilize it as part of any test (P/N, source, dimensions, volume...).