Twelve years ago I published a short article here (HPLC PUMP SOLVENT COMPRESSIBILITY VALUES) which described the importance of setting the correct solvent compressibility values in the HPLC pump's table. Developing HPLC methods which exhibit smooth, stable baselines, with little measurable signal artifacts (e.g. spikes, noise, oscillation) and minimal pressure fluctuations help insure reliable, repeatable methods. Taking steps to insure that the LC pump operates is setup properly for the method are part of following good chromatography fundamentals
Over the past month I consulted for three different clients who needed help in troubleshooting various "pump stability problems". In all three cases, each HPLC system showed extreme pump pressure cycling, cavitation, noise and instability over time. Pressure fluctuations of 10% (or in one case, 10-30% Ripple values) were observed in several different HPLC methods that were used. One of the very first areas to check for problems with pump pressure instability is mobile phase degassing.
Proper operation of the HPLC pump requires that efficient degassing of all mobile phases is performed before the liquids enter the pump head.
Failure to properly degas liquids often results in pump cavitation, check valve sticking and baseline instability. An Inline vacuum degasser or continuous Helium sparing should be used to degas all mobile phase solution for use in HPLC (not sonication or vacuum filtration which perform poorly to solve degassing issues).
In one of the three cases, the HPLC degasser was found to be broken and long overdue for service. Cleaning and servicing the degasser cured the problem and the method that once showed pressure ripple of >10% now shows no baseline disturbances and very low ripple of ~0.1% at ~ 70 bars system pressure.
Before I was called in to assist each client, the clients had replaced numerous parts, including: pump seals, check valves, mixers, solvent frits and still had the same baseline instability issues (no change). As recommended by me, two of the clients had their very old degassers cleaned and serviced (as they were long overdue for service), but still had some baseline and pump instability (servicing the degassers improved the baselines, but the pump was not running as it should). In both cases, the cause for the remaining pump instability was quickly identified by me on-site (many problems can be quickly diagnosed on-site).
- The client had incompatible solvent compressibility values stored as part of their HPLC methods. This resulted in huge baseline disturbances, spikes, cavitation and occasional loss of prime.
- Note: In a low-pressure HPLC single-head pumping system with multi-position solvent selector valve (e.g. Most ternary or quaternary systems) one value is allowed, but in a true, dual-head binary pumping system each of the two pump-heads may have a separate field to input the solvent compressibility values.
The importance of inputting the correct and applicable solvent compressibility value(s) into the pump's settings, for each solvent used is one of many steps in creating an optimized HPLC method. There are no universal values, but the instrument manufacturer will have included a generic value in the pump's compressibility settings field. Should you use this generic value? What are the chances that a randomly selected value used as a 'place holder' in the software is the correct value for your method? Just as with flow rate, solvent composition, run time, stroke volume, wavelength etc., entering (and saving) the correct solvent compressibility value into EACH method helps to optimize the pumping performance. You will want to select an appropriate value FOR EACH AND EVERY HPLC METHOD YOU CREATE and use (and be sure to save the method with a unique name). Start by loading your HPLC method into the system, then look at the solvent compressibility value(s) used. Are they correct? Change the value(s) shown to values that are appropriate for your method. It is OK to experiment and try different values (we encourage it!). Monitor the S/N levels of the baseline noise for comparison. The instrument manufacturer should provide a table of suggestion solvent compressibility values for use with their system [For HP/Agilent systems, you can see an example table at the link I provided in the first paragraph of this article or review the operator's manual for more information].
- A related article to this one that you may find useful is; "Diagnosing & Troubleshooting HPLC Pressure Fluctuation Problems (Unstable Baseline)";
No comments:
Post a Comment
ALL Comments are 100% Moderated to prevent SPAM. ANY/ALL SPAM comments are reported to GOOGLE and Automatically DELETED (They will NEVER appear on this BLOG).